ON AUTOMORPHISMS OF LIE ALGEBRAS OF CLASSICAL TYPE. III

ву GEORGE B. SELIGMAN

In this paper, the techniques developed in [9; 10] are applied to a study of concrete realizations of the exceptional Lie algebras of classical types F_4 and E_6 (see [8]) as Lie algebras of linear transformations of a split exceptional Jordan algebra \Im . Except for fields of characteristic 2 and 3, the interpretations of these Lie algebras given for characteristic zero by Chevalley and Schafer [3] are shown to carry over to arbitrary base fields. When several more low characteristics are exempted from consideration (on the basis of a failure of applicability of certain results on exponentials in [10]), the structure of the automorphism groups of these algebras is here determined in terms of certain linear groups acting in \Im . Some of the latter groups have also been studied recently by Jacobson [6; 7], who has proved the simplicity of a group here shown to be isomorphic to the group of invariant automorphisms of the Lie algebra in question (F_4 or E_6). The present paper also demonstrates the simplicity of these groups, by showing that they can be identified with groups whose simplicity has been proved by Chevalley [2].

1. Derivations of the split exceptional Jordan algebra. Let \mathfrak{C} be the split Cayley algebra over a field \mathfrak{F} of characteristic $\neq 2$, regarded as all matrices of the form

$$\begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix}$$
,

where α , $\beta \in \mathfrak{F}$ and a, $b \in \mathfrak{B}_3(\mathfrak{F})$, the space of triples of elements of \mathfrak{F} , with

$$\binom{\alpha}{b} \binom{\alpha}{\beta} \binom{\gamma}{d} \binom{c}{\delta} = \binom{\alpha\gamma + a \cdot d}{\gamma b + \beta d + (a \wedge c)} \binom{\alpha c + \delta a - (b \wedge d)}{\beta \delta + b \cdot c},$$

where $x \cdot y$ and $x \wedge y$ are the usual scalar and vector products in $\mathfrak{B}_{s}(\mathfrak{F})$, and with the involution $x \rightarrow \bar{x}$ defined by

$$\begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix}^{-} = \begin{pmatrix} \beta & -a \\ -b & \alpha \end{pmatrix}$$

[10]. Then $\mathbb G$ is an alternative algebra over $\mathfrak F$, and the symmetric bilinear form (x, y) defined by $(x, y)1 = (x\bar y + y\bar x)/2 = (\bar xy + \bar yx)/2$ is nondegenerate on

©. If we let $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$ be the usual basis for $\mathfrak{B}_3(\mathfrak{F})$ and set

$$u_{i} = \begin{pmatrix} 0 & 0 \\ e_{i} & 0 \end{pmatrix}, \qquad u_{4+i} = -2 \begin{pmatrix} 0 & e_{i} \\ 0 & 0 \end{pmatrix}, \qquad 1 \leq i \leq 3,$$

$$u_{4} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad u_{8} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix},$$

then u_1, \dots, u_8 is a basis for \mathbb{C} , and the matrix for (x, y) relative to this basis is

$$\left(\frac{0}{I_4}\bigg|\frac{I_4}{0}\right)$$
.

Thus the form (x, y) is of maximal Witt index, namely 4. The multiplication table for the basis u_1, \dots, u_8 in \mathbb{C} is as follows, where first factors stand to the left of rows, second factors at the head of columns:

	u_1	u_2	u_3	<i>u</i> ₄	u_5	u_6	u ₇	u_8
u_1	0	½u7	$-\frac{1}{2}u_{6}$	u_1	$-u_8$	0	0	0
u_2	$-\frac{1}{2}u_{7}$	0	1/2 u ₅	u_2	0	$-u_8$	0	0
u_3	½u6	$-\frac{1}{2}u_{5}$	0	из	0	0	$-u_8$	0
<i>u</i> ₄	0	0	0	и4	u_5	и ₆	u_7	0
u_{5}	$-2u_{4}$	0	0	0	0	4u ₃	$-4u_{2}$	2u ₅
<i>u</i> ₆	0	-2u ₄	0	0	$-4u_{3}$	0	4 <i>u</i> ₁	2u ₆
<i>u</i> ₇	0	0	$-2u_{4}$	0	4 <i>u</i> ₂	$-4u_1$	0	2u ₇
<i>u</i> ₈	$2u_1$	2u2	2u ₃	0	0	0	0	2u ₈

We shall refer to the *principle of triality*: If T is a linear transformation of \mathbb{C} which is skew with respect to (x, y), then there are uniquely determined skew transformations T^{ϕ} , T^{ψ} such that for all $x, y \in \mathbb{C}$,

$$(1) (xy)T^{\psi} = (xT)y + x(yT^{\phi}).$$

(See, for example, [3; 4; 7], or Chapter IV of [1].)

If E_{ij} are the usual (8 by 8) matrix units relative to the basis u_1, \dots, u_8 of \mathfrak{C} , then $H_i = E_{ii} - E_{i+4,i+4}$ is skew, $1 \le i \le 4$. In the Cartan subalgebra \mathfrak{D} of the Lie algebra \mathfrak{D}_4 , of all skew transformations of \mathfrak{C} , spanned by these H_i , we find that ϕ and ψ map \mathfrak{D} into itself, their matrices relative to the basis H_1, \dots, H_4 of \mathfrak{D} being:

(2)

That these satisfy the fundamental relation (1) is verified by checking $(u_j u_k) H_i^{\psi} = (u_j H_i) u_k + u_j (u_k H_i^{\phi})$ for all u_j , u_k , H_i .

Now let \Im be the 27-dimensional space over \Im of all 3 by 3 matrices of the form

$$a = egin{bmatrix} lpha_{11} & a_{12} & a_{13} \ ar{a}_{12} & lpha_{22} & a_{23} \ ar{a}_{13} & ar{a}_{23} & lpha_{33} \ \end{pmatrix},$$

 $\alpha_{ii} \in \mathfrak{F}$, $a_{ij} \in \mathfrak{C}$. With the composition $a \cdot b = ab + ba$, \mathfrak{F} is a Jordan algebra, which we shall call the split exceptional Jordan algebra [7]. Here if $a = (a_{ij})$ and $b = (b_{ij})$ are matrices with entries in \mathfrak{C} , the product $ab = (c_{ij})$ is defined as usual by $c_{ij} = \sum_{k} a_{ik}b_{kj}$, the multiplication of entries being that in \mathfrak{C} .

Let $\mathfrak P$ be the Lie algebra of all derivations of $\mathfrak P$, i.e., all linear transformations D of $\mathfrak P$ over $\mathfrak P$ such that $(a \cdot b)D = (aD) \cdot b + a \cdot (bD)$ for all $a, b \in \mathfrak P$. Then, as usual, ID = 0, where I denotes the identity matrix. Next let $x = \operatorname{diag}\{1, 1, -1\} \in \mathfrak P$, and let

$$xD = a = egin{bmatrix} lpha_{11} & a_{12} & a_{13} \ ar{a}_{12} & lpha_{22} & a_{23} \ ar{a}_{13} & ar{a}_{23} & lpha_{33} \end{pmatrix}.$$

For economy of space, write $a = \text{diag}\{\alpha_{11}, \alpha_{22}, \alpha_{33}\} + a_{12}(1, 2) + a_{13}(1, 3) + a_{23}(2, 3)$. From $x \cdot x = I + I$, we have $0 = 2(ID) = 2x \cdot a = 4$ diag $\{\alpha_{11}, \alpha_{22}, \alpha_{33}\} + 4a_{12}(1, 2)$, or $\alpha_{11} = \alpha_{22} = \alpha_{33} = 0$, $a_{12} = 0$, and $xD = a_{13}(1, 3) + a_{23}(2, 3)$. Similarly, if $y = \text{diag}\{1, -1, 1\} \in \mathcal{F}$, $yD = b_{12}(1, 2) + b_{23}(2, 3)$, and $x \cdot y = 2x + 2y - 2I$ yields $(x \cdot y)D = (xD) \cdot y + x \cdot (yD) = 2xD + 2yD$, or $2b_{12}(1, 2) + 2a_{13}(1, 3) = 2b_{12}(1, 2) + 2a_{13}(1, 3) + 2(a_{23} + b_{23})(2, 3)$, so that $b_{23} = -a_{23}$. Writing a_{12} in place of b_{12} , we see from diag $\{\alpha_{11}, \alpha_{22}, \alpha_{33}\} = (\alpha_{22} + \alpha_{33})I/2 + (\alpha_{11} - \alpha_{22})y/2 + (\alpha_{11} - \alpha_{33})x/2$ that

(3)
$$\begin{aligned} \operatorname{diag}\left\{\alpha_{11}, \, \alpha_{22}, \, \alpha_{33}\right\} D \\ &= \frac{1}{2} \left[(\alpha_{11} - \alpha_{22}) a_{12}(1, 2) + (\alpha_{11} - \alpha_{33}) a_{13}(1, 3) + (\alpha_{22} - \alpha_{33}) a_{23}(2, 3) \right], \end{aligned}$$

where a_{12} , a_{13} , a_{23} are determined as above by xD and yD.

Next let $a \in \mathbb{C}$, and let $a(1, 2)D = \operatorname{diag}\{\beta_{11}, \beta_{22}, \beta_{33}\} + b_{12}(1, 2) + b_{13}(1, 3) + b_{23}(2, 3)$. Since $a(1, 2) \cdot a(1, 2) = (a, a)(I+x)$, we find by computing $(a(1, 2) \cdot a(1, 2))D$ as $2a(1, 2) \cdot (a(1, 2))D$ and as (a, a)(I+x)D = (a, a)xD by (3), that

(4)
$$\beta_{11} + \beta_{22} = 0$$
; $(a, a)a_{13} = 2ab_{23}$; $(a, a)a_{23} = 2\bar{a}b_{23}$; $(a, b_{12}) = 0$.

From $a(1, 2) \cdot y = 0$ we obtain $a(1, 2)D \cdot y + a(1, 2) \cdot (yD) = 0$, so that one finds

(5)
$$\beta_{11} = -(a, a_{12}); \quad \beta_{33} = 0; \quad b_{13} = \frac{1}{2} aa_{23}.$$

From $a(1, 2) \cdot x = 2a(1, 2)$, we find as above that $b_{23} = \bar{a}a_{13}/2$. If we set $2b_{12} = aT$, $T \in \mathfrak{C}(\mathbb{S})$, the algebra of all linear transformations of \mathbb{S} , we see from the condition $(a, b_{12}) = 0$ of (4) that (a, aT) = 0 for all $a \in \mathbb{S}$, hence that T is skew: $T \in \mathfrak{D}_4$. Thus we have

(6)
$$= \frac{1}{2} [(a, a_{12}) \operatorname{diag} \{-1, 1, 0\} + (aT)(1, 2) + (aa_{23})(1, 3) + (\bar{a}a_{13})(2, 3)],$$

where $T \in \mathfrak{D}_4$, and where a_{12} , a_{13} , a_{23} are as in (3). Similarly, we have a(1, 3)D

(7)
$$= \frac{1}{2} [(a, a_{13}) \operatorname{diag} \{-1, 0, 1\} - (a\bar{a}_{23})(1, 2) + (aU)(1, 3) + (\bar{a}_{12}a)(2, 3)],$$

$$a(2, 3)D$$

(8)
$$= \frac{1}{2} \left[(a, a_{23}) \operatorname{diag} \{ 0, -1, 1 \} - (a_{13}\bar{a})(1, 2) - (a_{12}a)(1, 3) + (aV)(2, 3) \right]$$

where $U, V \in \mathfrak{D}_4$. In particular we note that D maps \mathfrak{F} into the subspace \mathfrak{F}' of matrices of trace zero.

Now from $a(1, 2) \cdot b(2, 3) = (ab)(1, 3)$ we obtain $a(1, 2)D \cdot b(2, 3) + a(1, 2) \cdot b(2, 3)D = (ab)(1, 3)D$. Computing and comparing entries in the (1, 3)-positions yields (ab)U = (aT)b + a(bV) for all $a, b \in \mathbb{C}$. That is, $V = T^{\phi}, U = T^{\psi}$, where ϕ and ψ are the automorphisms of \mathfrak{D}_4 given in the principle of triality. Thus D is completely determined by the parameters a_{12} , a_{13} , $a_{23} \in \mathbb{C}$, and by $T \in \mathfrak{D}_4$. Hence the dimension of \mathfrak{L} does not exceed $3 \cdot 8 + 28 = 52$.

The mapping $D \rightarrow (a_{12}, a_{13}, a_{23}, T)$ is linear from \mathfrak{L} into $\mathfrak{C} \oplus \mathfrak{C} \oplus \mathfrak{D} \oplus \mathfrak{D}_4$, and

is one-one. As in §6 of [10], to show it is onto we need only show that if for a_{12} , a_{13} , $a_{23} \in \mathbb{C}$, $T \in \mathfrak{D}_4$, we define a linear transformation D of \mathfrak{F} by

$$(\operatorname{diag}\{\beta_{11}, \beta_{22}, \beta_{33}\} + b_{12}(1, 2) + b_{13}(1, 3) + b_{23}(2, 3))D$$

$$= \frac{1}{2} \left[\operatorname{diag}\{-2(b_{12}, a_{12}) - 2(b_{13}, a_{13}), 2(b_{12}, a_{12}) - 2(b_{23}, a_{23}), 2(b_{13}, a_{13}) + 2(b_{23}, a_{23})\} + ((\beta_{11} - \beta_{22})a_{12} - b_{13}\bar{a}_{23} - a_{13}\bar{b}_{23} + b_{12}T)(1, 2) + ((\beta_{11} - \beta_{33})a_{13} + b_{12}a_{23} - a_{12}b_{23} + b_{13}T^{\psi})(1, 3) + ((\beta_{22} - \beta_{33})a_{23} + \bar{b}_{12}a_{13} + \bar{a}_{12}b_{13} + b_{23}T^{\psi})(2, 3) \right].$$

then D is a derivation of \Im . This follows by a rather lengthy calculation which becomes straightforward when the identities in \mathbb{C} noted below are used:

© is an alternative algebra, i.e., $a(ab) = a^2b$, $(ab)b = ab^2$ for all $a, b \in \mathbb{C}$. If we define A(a, b, c) = (ab)c - a(bc), it follows by polarization of the above that A(a, b, c) = -A(b, a, c) = -A(a, c, b), so that A(a, b, c) is an alternating function of its arguments. For the scalar product in © it follows that $(a, bc) = (a\bar{c}, b) = (ba, c)$, and that $2(a, b)c - b(\bar{a}c) - a(bc) = (ab)c - a(bc) + (b\bar{a})c - b(\bar{a}c) = A(a, b, c) + A(b, \bar{a}, c) = A(a, b, c) - A(\bar{a}, b, c) = A(a, (b+b), c) - A(a, b, c) - A((\bar{a}+a), b, c) + A(a, b, c) = 0$, since b+b and a+a are in §·1. By a similar argument one obtains the second of the two equations

(10)
$$2(a, b)c = a(\bar{b}c) + b(\bar{a}c), \qquad 2(a, b)c = (ca)\bar{b} + (cb)\bar{a}.$$

The two identities that require further discussion are

(11)
$$(a\bar{b})T = a(bT^{\phi})^{-} + (aT^{\psi})\bar{b}, \qquad (\bar{b}a)T^{\phi} = (bT)^{-}a + \bar{b}(aT^{\psi})$$

for all $a, b \in \mathbb{C}$, and for all $T \in \mathfrak{D}_4$. These are linear in b. First let $b = \lambda 1, \lambda \in \mathfrak{F}$; then they become $\lambda a T = \lambda a (1T^{\phi})^- + \lambda (aT^{\psi}) 1$ and $\lambda a T^{\phi} = \lambda (1T)^- a + \lambda 1 (aT^{\psi})$. From the fact that T and T^{ϕ} are skew, we have $(1, 1T) = 0 = (1, 1T^{\phi})$, or $1(1T)^- + (1T)\overline{1} = 0 = 1(1T^{\phi})^- + (1T^{\phi})\overline{1}$, i.e., $(1T)^- = -1T$, $(1T^{\phi})^- = -1T^{\phi}$. Thus the desired identities become $\lambda a T = -\lambda a (1T^{\phi}) + \lambda a T^{\psi}$ and $\lambda a T^{\phi} = -\lambda (1T)a + \lambda a T^{\psi}$. These now follow from $a T^{\psi} = (a1) T^{\psi} = (aT) 1 + a (1T^{\phi}) = aT + a (1T^{\phi})$ and $a T^{\psi} = (1a) T^{\psi} = (1T)a + 1 (aT^{\phi}) = (1T)a + a T^{\phi}$, respectively.

Next let $b \in \mathbb{C}'$, the space of elements of trace zero in \mathbb{C} ; since the form (x, y) is nondegenerate on \mathbb{C} and since \mathbb{C}' is the orthogonal complement of the nonisotropic subspace $\mathfrak{F}1$ with respect to this form, we may assume that b runs through a basis for \mathbb{C}' consisting of elements b with $(b, b) \neq 0$. It remains only to prove (11) when b is of this form. Then we have $(b, b)1 = b\overline{b} = \overline{b}b = \beta 1$ $\neq 0$, $\beta \in \mathfrak{F}$, and $0 = \overline{b} + b = (1, b)$, $b^2 = -b\overline{b} = -\beta 1$. Thus we must verify

(12)
$$-(ab)T = a(bT^{\phi})^{-} - (aT^{\psi})b, \qquad -(ba)T^{\phi} = (bT)^{-}a - b(aT^{\psi})$$

for such b. We know that $-\beta a T^{\psi} = (ab^2) T^{\psi} = ((ab)b) T^{\psi} = ((ab)T)b + (ab)(bT^{\phi})$, and that $-\beta a T^{\psi} = (b(ba)) T^{\psi} = (bT)(ba) + b((ba)T^{\phi})$. Multiplying the former

of these equations on the right by b and the second on the left by b gives

(13)
$$-\beta(ab)T + ((ab)(bT^{\phi}))b = -\beta(aT^{\psi})b,$$

$$b((bT)(ba)) - \beta(ba)T^{\phi} = -\beta b(aT^{\psi}).$$

Now $(ab)(bT^{\phi}) = A(a, b, bT^{\phi}) + a(b(bT^{\phi})) = -A(a, bT^{\phi}, b) - a(b(bT^{\phi}))$ $= A(a, (bT^{\phi})^{-}, b) - a(2(b, bT^{\phi}) - (bT^{\phi})^{-}b)$, and (bT)(ba) = -A(bT, b, a) $+((bT)b)a = -A(b, (bT)^{-}, a) - (2(bT, b) - b(bT)^{-})a$. Since T and T^{ϕ} are skew, $(b, bT) = 0 = (b, bT^{\phi})$, and we have $(ab)(bT^{\phi}) = (a(bT^{\phi})^{-}b) - a((bT^{\phi})^{-}b)$ $+a((bT^{\phi})^{-}b) = (a(bT^{\phi})^{-})b$, $(bT)(ba) = -(b(bT)^{-})a + b((bT)^{-}a) + (b(bT)^{-})a$ $=b((bT)^{-}a)$; substituting in (13) gives $-\beta(ab)T + ((a(bT^{\phi})^{-})b)b = -\beta(aT^{\phi})b$ and $b(b((bT)^{-}a)) - \beta(ba)T^{\phi} = -\beta b(aT^{\phi})$. From the alternative identities, $-\beta(ab)T - \beta a(bT^{\phi})^{-} = -\beta(aT^{\phi})b$ and $-\beta(bT)^{-}a - \beta(ba)T^{\phi} = -\beta b(aT^{\phi})$. The identities (12) are now immediate.

Thus we can identify $\mathfrak L$ with $\mathfrak L \oplus \mathfrak L \oplus \mathfrak L \oplus \mathfrak L$ as above. Let $D=(a_{12},a_{13},a_{23},T)$, $E=(b_{12},b_{13},b_{23},U)$ be derivations of $\mathfrak L$, in this identification. Computing the effect of [DE] on x y, and a(1,2) as above yields for $[DE]=(c_{12},c_{13},c_{23},V)$,

$$c_{12} = \frac{1}{2} (a_{12}U - b_{12}T - a_{13}\bar{b}_{23} + b_{13}\bar{a}_{23}),$$

$$c_{13} = \frac{1}{2} (a_{13}U^{\psi} - b_{13}T^{\psi} - b_{12}a_{23} + a_{12}b_{23}),$$

$$c_{23} = \frac{1}{2} (a_{23}U^{\phi} - b_{23}T^{\phi} + \bar{b}_{12}a_{13} - \bar{a}_{12}b_{13}),$$

$$aV = \frac{1}{2} (4(a, b_{12})a_{12} - 4(a, a_{12})b_{12} - (aa_{23})\bar{b}_{23} + (ab_{23})\bar{a}_{23} - b_{13}(\bar{a}_{13}a) + a_{13}(\bar{b}_{13}a) + a[TU]), \qquad a \in \mathfrak{C}.$$

The subspace \mathfrak{F} of \mathfrak{L} spanned by the derivations $2(0, 0, 0, H_i) = h_i$, $1 \le i \le 4$, is thus a commutative subalgebra of \mathfrak{L} . From our computation of H_i^{ϕ} , H_i^{ψ} , it follows that \mathfrak{F} is also spanned by the elements $2(0, 0, 0, H_i^{\phi})$ and is spanned by the $2(0, 0, 0, H_i^{\psi})$. Moreover we have

$$[(u_j, 0, 0, 0), h_i] = (u_j H_i, 0, 0, 0) = \begin{cases} \delta_{ij}(u_j, 0, 0, 0), & 1 \le j \le 4, \\ -\delta_{i,j-4}(u_j, 0, 0, 0), & 5 \le j \le 8. \end{cases}$$

If we define $\beta_j \in \mathfrak{F}^*$, $1 \leq j \leq 4$, by $\beta_j(h_i) = \delta_{ij}$, $1 \leq i \leq 4$, then for each $h \in \mathfrak{F}$ we have

(15)
$$[(u_j, 0, 0, 0), h] = \beta_j(h)(u_j, 0, 0, 0), \qquad 1 \le j \le 4, \\ [(u_{j+4}, 0, 0, 0), h] = -\beta_j(h)(u_{j+4}, 0, 0, 0), \qquad 1 \le j \le 4.$$

We also have $[(0, u_j, 0, 0), h_i] = (0, u_j H_i^{\flat}, 0, 0), [(0, 0, u_j, 0), h_i] = (0, 0, u_j H_i^{\flat}, 0), 1 \le j \le 8$, so that if we define $\beta_5, \dots, \beta_{12} \in \mathfrak{F}^*$ by $\beta_{j+4}(h_i) = (-1/2) + \delta_{ij}, 1 \le j \le 4, 1 \le i \le 4; \beta_{j+8}(h_i) = (-1/2) + \delta_{ij}, 1 \le i, j \le 3, \beta_{j+8}(h_4) = 1/2, 1 \le j \le 3, \beta_{12}(h_i) = -1/2, 1 \le i \le 4$, then it follows by (2) that for all $h \in \mathfrak{F}$,

(16)
$$[(0, u_{j}, 0, 0), h] = \beta_{j+4}(h)(0, u_{j}, 0, 0),$$

$$[(0, u_{j+4}, 0, 0), h] = -\beta_{j+4}(h)(0, u_{j+4}, 0, 0),$$

$$[(0, 0, u_{j}, 0), h] = \beta_{j+8}(h)(0, 0, u_{j}, 0),$$

$$[(0, 0, u_{j+4}, 0), h] = -\beta_{j+8}(h)(0, 0, u_{j+4}, 0),$$

$$1 \le j \le 4.$$

From observation of the formula for V in (14), we find $\beta_{13}, \dots, \beta_{24}$ in \mathfrak{F}^* and 24 nonzero elements $T \in \mathfrak{D}_4$ such that for all $h \in \mathfrak{F}$,

$$[(0, 0, 0, T), h] = \beta(h)(0, 0, 0, T),$$

where, for the various values of T, β runs through $\pm \beta_{13}$, \cdots , $\pm \beta_{24}$. If $13 \le j \le 18$, we have $\beta_j(h_i) = \delta_{mi} - \delta_{ni}$, $1 \le m < n \le 4$; for $19 \le j \le 24$, $\beta_j(h_i) = -\delta_{mi} - \delta_{ni}$, $1 \le m < n \le 4$, $1 \le i \le 4$. Here T runs through the transformations $E_{ij} - E_{j+4,i+4}$, $1 \le i$, $j \le 4$; $E_{i,j+4} - E_{j,i+4}$; $E_{i+4,j} - E_{j+4,i}$, $1 \le i < j \le 4$, where the E_{mn} are 8 by 8 matrix units relative to the basis u_1, \dots, u_8 of \mathfrak{C} . For example, with $T = E_{16} - E_{25}$, (0, 0, 0, T) belongs to the function β with $\beta(h_i) = -\delta_{1i} - \delta_{2i}$, and $(0, 0, 0, E_{52} - E_{61})$ to the function $-\beta$.

We assume now that the characteristic of \mathfrak{F} is neither 2 nor 3. The $\pm \beta_i$, $1 \le i \le 24$, are 48 distinct nonzero linear functions on \mathfrak{F} such that for each β , there is a nonzero $e_{\beta} \in \mathfrak{F}$ such that $[e_{\beta}h] = \beta(h)e_{\beta}$ for all $h \in \mathfrak{F}$. If we set $\mathfrak{F}_{\beta} = \mathfrak{F}e_{\beta}$ for each such β , then the \mathfrak{F}_{β} are independent, and the \mathfrak{F}_{β} , together with \mathfrak{F}_{β} , are also independent. Thus $\mathfrak{F} = \mathfrak{F} + \sum_{\beta} \mathfrak{F}_{\beta}$, a vector space direct sum. It follows as in §6 of [10] that \mathfrak{F}_{β} is an abelian Cartan subalgebra of \mathfrak{F}_{β} , with respect to which the $\pm \beta_i$ are roots. The roots β span \mathfrak{F}^* , since β_1, \dots, β_4 already do so. Now it follows as in §6 of [10] that the center of \mathfrak{F}_{β} is zero. Evidently $\mathfrak{F}_{\beta} \subseteq [\mathfrak{F}_{\beta}]$ for each root β ; also $\mathfrak{F} \subseteq [\mathfrak{F}_{\beta}]$, since \mathfrak{F}_{β} is spanned by the $[e_{-\beta}e_{\beta}]$ for β among $\beta_{13}, \dots, \beta_{24}$. Thus \mathfrak{F}_{β} is seen to satisfy the postulates of [8], except possibly for (iv) and (v). For β among $\pm \beta_{13}, \dots, \pm \beta_{18}$, the fact that $[\mathfrak{F}_{-\beta}\mathfrak{F}_{\beta}] \neq 0$ follows from (14), (18), and $[E_{ij} - E_{j+4,i+4}, E_{ji} - E_{i+4,j+4}] = E_{ii} - E_{j+4,j+4} - E_{i+4,i+4}$, $1 \le i$, $j \le 4$; for β among $\pm \beta_{19}, \dots, \pm \beta_{24}$, it follows from (14), (18), and $[E_{i,j+4} - E_{j,i+4}, E_{j+4,i} - E_{i+4,j}] = E_{ii} + E_{jj} - E_{i+4,i+4} - E_{j+4,j+4}$, $1 \le i$, $j \le 4$, $i \ne j$.

For β among $\pm \beta_1, \cdots, \pm \beta_4$, it follows from (14) that

$$[(u_i, 0, 0, 0), (u_{i+4}, 0, 0, 0)] = (0, 0, 0, V), 1 \le i \le 4,$$

where $aV = 2(a, u_{i+4})u_i - 2(a, u_i)u_{i+4}$; thus $u_iV = 2u_i \neq 0$, and $[\mathfrak{L}_{-\beta}\mathfrak{L}_{\beta}] \neq 0$. For β among $\pm \beta_5$, \cdots , $\pm \beta_8$, we have for $1 \leq i \leq 4$, $[(0, u_i, 0, 0), (0, u_{i+4}, 0, 0)] = (0, 0, 0, V)$, where $aV = (u_i(\bar{u}_{i+4}a)/2 - u_{i+4}(\bar{u}_{i}a))$. If $1 \leq i \leq 3$, it follows

from the table on page 287 and the fact that $\bar{u}_i = -u_i$, $\bar{u}_{i+4} = -u_{i+4}$, that $u_8V = -u_iu_{i+4} = u_8$, so $V \neq 0$. If i = 4, then $\bar{u}_4 = u_8/2$, $\bar{u}_8 = 2u_4$, and $u_1V = -u_8u_1/2 = -u_1$, so $V \neq 0$. Thus $[\mathfrak{L}_{-\beta}\mathfrak{L}_{\beta}] \neq 0$ for these values of β . A similar argument applies for β among $\pm \beta_9$, \cdots , $\pm \beta_{12}$. Hence all $[\mathfrak{L}_{-\beta}\mathfrak{L}_{\beta}]$ are one-dimensional, and (iv) of [8] is satisfied.

Now the roots α_1 , defined as the root to which $(0, 0, 0, E_{32} - E_{67})$ belongs; α_2 , the root to which $(0, 0, 0, E_{16} - E_{25})$ belongs; $\alpha_3 = \beta_1$; $\alpha_4 = -\beta_5$ form a basis for \mathfrak{F}^* , and the totality of roots are: $\pm \alpha_i$, $1 \le i \le 4$; $\pm (\alpha_i + \alpha_{i+1})$, $1 \le i \le 3$; $\pm (\alpha_i + \alpha_{i+1} + \alpha_{i+2})$, i = 1, 2; $\pm (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)$; $\pm (\alpha_2 + 2\alpha_3)$; $\pm (\alpha_1 + \alpha_2 + 2\alpha_3)$; $\pm (\alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4)$; $\pm (\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4)$; $\pm (\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4)$; $\pm (\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4)$; $\pm (\alpha_1 + 2\alpha_2 + 3\alpha_3 + \alpha_4)$; $\pm (\alpha_1 + 2\alpha_2 + 3\alpha_3 + \alpha_4)$; $\pm (\alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4)$; $\pm (\alpha_1 + 2\alpha_2 + 4\alpha_3 + 2\alpha_4)$; $\pm (\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4)$; $\pm (2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4)$; $\pm (2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4)$. Since the characteristic of \mathfrak{F} is not 2 or 3, it follows by inspection of this list that not all $\alpha + k\beta$ can be roots (or zero) for any nonzero root β , and also that α_1 , α_2 , α_3 , α_4 form a fundamental system of roots relative to \mathfrak{F} in the sense of [8]. This system is of type F_4 , as is seen from the above. Thus all axioms (i)–(v) of [8] are satisfied, and by Theorem 8 of [8], \mathfrak{F} is (normal) simple and is a representative of the isomorphism class F_4 of [8]. In combination with Theorem 9 of [8], this reasoning gives the following theorem:

THEOREM 1. The Lie algebra \mathfrak{L} of derivations of the split exceptional Jordan algebra \mathfrak{L} is a simple Lie algebra of classical type F_4 over the field \mathfrak{L} of characteristic $\neq 2$, 3. Every Lie algebra of classical type over \mathfrak{L} with a fundamental system of roots of type F_4 is isomorphic to \mathfrak{L} .

2. The enveloping algebra of \mathfrak{L} in \mathfrak{J}' . If we let u_1, \dots, u_8 be our basis for \mathfrak{L} , then every element of \mathfrak{D}_4 , acting in \mathfrak{L} , has as matrix relative to this basis a matrix of the form

$$X = \left(\frac{(\xi)}{(\zeta)} \middle| \frac{(\eta)}{-(\xi)'}\right),\,$$

where (ξ) , (η) , (ζ) are 4 by 4 matrices with $(\eta)' = -(\eta)$, $(\zeta)' = -(\zeta)$. One verifies directly that the images of this element under the triality automorphisms ϕ , ψ are

$$X^{\phi} = \left(\begin{array}{c|c} (\alpha) & (\beta) \\ \hline (\gamma) & -(\alpha)' \end{array}\right),$$

$$X^{\psi} = \left(\begin{array}{c|c} (\mu) & | (\nu) \\ \hline (\rho) & | - (\mu)' \end{array}\right),\,$$

where

$$(\alpha) = \begin{cases} \frac{1}{2} \left(\xi_{11} - \xi_{22} - \xi_{13} + \xi_{44} \right) & \xi_{12} & \xi_{13} & -2\eta_{14} \\ \xi_{11} & \frac{1}{2} \left(-\xi_{11} + \xi_{22} - \xi_{23} + \xi_{44} \right) & \xi_{23} & -2\eta_{24} \\ \xi_{21} & \xi_{22} & \frac{1}{2} \left(-\xi_{11} - \xi_{21} + \xi_{23} + \xi_{44} \right) & -2\eta_{24} \\ \frac{1}{2} \xi_{14} & \frac{1}{2} \xi_{24} & \frac{1}{2} \left(-\xi_{11} - \xi_{21} + \xi_{23} + \xi_{44} \right) & -2\eta_{24} \\ \frac{1}{2} \xi_{14} & \frac{1}{2} \xi_{42} & \frac{1}{4} \xi_{12} \\ \frac{1}{2} \xi_{42} & \frac{1}{2} \xi_{41} & \frac{1}{4} \xi_{12} \\ \frac{1}{4} \xi_{12} & \frac{1}{4} \xi_{13} & \frac{1}{4} \xi_{12} & 0 \end{cases}, \quad (\gamma) = \begin{bmatrix} 0 & 2\xi_{14} & -2\xi_{24} & -4\eta_{22} \\ -2\xi_{14} & 0 & 2\xi_{14} & 4\eta_{11} \\ 2\xi_{24} & -2\xi_{24} & 0 & -4\eta_{12} \\ 4\eta_{23} & -4\eta_{13} & 4\eta_{12} & 0 \end{bmatrix}, \quad (\beta) = \begin{bmatrix} \frac{1}{2} \left(\xi_{11} - \xi_{22} - \xi_{23} - \xi_{44} \right) & \xi_{12} & \xi_{13} \\ \xi_{11} & \xi_{12} & \frac{1}{2} \left(-\xi_{11} + \xi_{22} - \xi_{33} - \xi_{44} \right) & \xi_{23} \\ \xi_{23} & \xi_{23} & \xi_{24} \\ \xi_{24} & \frac{1}{2} \left(-\xi_{24} - \xi_{24} - \xi_{24} \right) & \xi_{24} \\ \xi_{24} & \frac{1}{2} \left(-\xi_{24} - \xi_{24} - \xi_{24} \right) & \xi_{24} \\ \xi_{24} & \frac{1}{2} \left(-\xi_{24} - \xi_{24} - \xi_{24} \right) & \xi_{24} \\ \xi_{24} & -2\xi_{24} & 0 & -4\eta_{12} \\ 4\eta_{24} & -4\eta_{13} & 4\eta_{12} & 0 \end{bmatrix}$$

Using the uniqueness of X^{ϕ} and X^{ψ} , these assertions are readily checked by seeing that for each pair of basis elements u_i , u_j , $(u_iu_j)X^{\psi}=(u_iX)u_j+u_i(u_jX^{\phi})$. Let $w_1=\operatorname{diag}\{1,-1,0\}$, $w_2=\operatorname{diag}\{0,1,-1\}$. Then w_1 , w_2 and the a(j,k),

 $1 \le j < k \le 3$, $a \in \mathbb{C}$, span the space \mathfrak{I}' . Since \mathfrak{L} maps \mathfrak{I}' into \mathfrak{I}' and I into \mathfrak{I} , we may identify \mathfrak{L} with its restriction to \mathfrak{I}' . In this sense, we have

Lemma 1. $\mathfrak{L}^4 = \mathfrak{E}(\mathfrak{J}')$, the full algebra of linear transformations of \mathfrak{J}' .

To prove the lemma, we first observe the effect on a general element of \mathfrak{F}' of our basis for \mathfrak{F} . Thus if $a = \alpha_1 w_1 + \alpha_2 w_2 + a_{12}(1, 2) + a_{13}(1, 3) + a_{23}(2, 3)$, we have

$$a(u_{i}, 0, 0, 0) = -(a_{12}, u_{i})w_{1} + \frac{1}{2}(2\alpha_{1} - \alpha_{2})u_{i}(1, 2) - \frac{1}{2}(u_{i}a_{23})(1, 3)$$

$$+ \frac{1}{2}(\bar{u}_{i}a_{13})(2, 3);$$

$$a(0, u_{i}, 0, 0) = -(a_{13}, u_{i})(w_{1} + w_{2}) - \frac{1}{2}(u_{i}\bar{a}_{23})(1, 2) + \frac{1}{2}(\alpha_{1} + \alpha_{2})u_{i}(1, 3)$$

$$+ \frac{1}{2}(\bar{a}_{12}u_{i})(2, 3);$$

$$a(0, 0, u_{i}, 0) = -(a_{23}, u_{i})w_{2} - \frac{1}{2}(a_{13}\bar{u}_{i})(1, 2) + \frac{1}{2}(a_{12}u_{i})(1, 3)$$

$$+ \frac{1}{2}(2\alpha_{2} - \alpha_{1})u_{i}(2, 3);$$

$$1 \leq i \leq 8,$$

and

$$a(0, 0, 0, T) = \frac{1}{2} (a_{12}T)(1, 2) + \frac{1}{2} (a_{13}T^{\psi})(1, 3) + \frac{1}{2} (a_{23}T^{\psi})(2, 3), T \in \mathfrak{D}_{4}.$$

From the first three of (20), we see that $a(u_i, 0, 0, 0)^2 = -(a_{12}, u_i)u_i(1, 2)$, $a(0, u_i, 0, 0)^2 = -(a_{13}, u_i)u_i(1, 3)$, $a(0, 0, u_i, 0)^2 = -(a_{23}, u_i)u_i(2, 3)$, $1 \le i \le 8$. Thus if we denote by E(v, w) the matrix unit sending the basis vector v into the vector v of the same fixed basis, and all other basis vectors into 0, it follows that \mathfrak{L}^2 contains

(21)
$$E(u_i(j, k), u_{i+4}(j, k)); \qquad E(u_{i+4}(j, k), u_i(j, k)), \\ 1 \leq j < k \leq 3, \ 1 \leq i \leq 4.$$

Now $a(u_i, 0, 0, 0)^2(u_j, 0, 0, 0) = (a_{12}, u_i)(u_i, u_j)w_1$, which yields for j=4 or j=i-4 the result that \mathfrak{L}^3 contains each $E(u_i(1, 2), w_1)$, $1 \le i \le 8$. This and the analogue for $(0, u_i, 0, 0)^2(0, u_j, 0, 0)$ and for $(0, 0, u_i, 0)^2(0, 0, u_j, 0)$ show that \mathfrak{L}^3 contains all

(22)
$$E(u_i(1, 2), w_1), E(u_i(1, 3), w_1) + E(u_i(1, 3), w_2), E(u_i(2, 3), w_2), 1 \le i \le 8.$$

For $1 \le i \le 4$, we denote by C(i) the set of all $j \ne i$, $1 \le j \le 4$, and the integer i+4, and by D(i) the complement of C(i) in $1, 2, \cdots, 8$. For $5 \le i \le 8$, we set C(i) = D(i-4), D(i) = C(i-4). Let $C'(i) = \{C(i), 8\} - \{4\}$, $1 \le i \le 3$, $C'(4) = \{1, 2, 3, 4\}$, and let D'(i) be the complement of C'(i), $1 \le i \le 4$; for $5 \le i \le 8$, set C'(i) = D'(i-4), D'(i) = C'(i-4). Then left multiplication by u_i , $i \ne 4$, 8, maps the subspace of $\mathbb S$ spanned by the u_j , $j \in C(i)$, onto the subspace spanned by the u_j , $j \in D(i)$, and the latter subspace onto 0. Let multiplication by

 u_i , i=4, 8, map the subspace spanned by the u_j , $j \in C(i)$, onto 0, and the subspace spanned by the u_j , $j \in D(i)$, onto itself; moreover vectors of this basis are sent onto scalar multiples of vectors of this basis for every i, $1 \le i \le 8$. Similarly, right multiplication by u_i , $i \ne 4$, 8, sends the span of the u_j , $j \in C'(i)$, onto the span of the u_j , $j \in D'(i)$, and the latter onto zero; for i=4, 8, the span of the u_j , $j \in C'(i)$, is mapped onto itself and the remaining u_j go into zero.

Now computing $(u_i, 0, 0, 0)^2(0, u_j, 0, 0)$, we see that a goes into $-(a_{12}, u_i)(\bar{u}_i u_j)(2, 3)/2$. Since the first factor $(u_i, 0, 0, 0)^2$ is essentially a matrix unit $E(u_{i\pm 4}(1, 2), u_i(1, 2))$, we see that for $i\neq 4$, 8, where $\bar{u}_i = -u_i$, our transformation is 0 if $j\in D(i)$, and for $j\in C(i)$ yields in \mathfrak{L}^3 the matrix units $E(u_{i\pm 4}(1, 2), u_k(2, 3)), k\in D(i)$, i.e., the $E(u_i(1, 2), u_k(2, 3)), k\in C(i)$. For i=4, 8, $\bar{u}_i=\lambda u_{i\pm 4}, 0\neq\lambda\in\mathfrak{F}$, yielding in \mathfrak{L}^3 all $E(u_{i\pm 4}(1, 2), u_k(2, 3)), k\in D(i\pm 4)$; thus \mathfrak{L}^3 contains all

(23)
$$E(u_i(1, 2), u_j(2, 3)), \quad j \in C(i), \qquad 1 \le i \le 8, i \ne 4, 8; \\ E(u_i(1, 2), u_j(2, 3)), \quad j \in D(i), \qquad i = 4, 8.$$

Similarly from $(u_i, 0, 0, 0)^2(0, 0, u_i, 0) \in \mathbb{R}^3$, we have in \mathbb{R}^3

(24)
$$E(u_i(1, 2), u_j(1, 3)), \quad j \in C(i), \quad 1 \leq i \leq 8.$$

From $(0, u_i, 0, 0)^2(u_j, 0, 0, 0)$, $(0, u_i, 0, 0)^2(0, 0, u_j, 0)$, $(0, 0, u_i, 0)^2(u_j, 0, 0, 0)$, $(0, 0, u_i, 0)^2(0, u_j, 0, 0)$, we have in \mathfrak{L}^3 :

(25)
$$E(u_{i}(1, 3), u_{j}(2, 3)), \quad j \in C'(i), \qquad i \neq 4, 8;$$

$$E(u_{i}(1, 3), u_{j}(2, 3)), \quad j \in D'(i), \qquad i = 4, 8;$$

$$E(u_{i}(1, 3), u_{j}(1, 2)), \quad j \in C(i), \qquad 1 \leq i \leq 8;$$

$$E(u_{i}(2, 3), u_{j}(1, 3)), \quad j \in C'(i), \qquad i \neq 4, 8;$$

$$E(u_{i}(2, 3), u_{j}(1, 3)), \quad j \in D'(i), \qquad i = 4, 8;$$

$$E(u_{i}(2, 3), u_{j}(1, 2)), \quad j \in C'(i), \qquad 1 \leq i \leq 8.$$

From following $(u_i, 0, 0, 0)^2$, $(0, u_i, 0, 0)^2$, $(0, 0, u_i, 0)^2$ by suitable (0, 0, 0, T), where T is selected from the basis for \mathfrak{D}_4 used in §1, we find that \mathfrak{L}^3 also contains all

(26)
$$E(u_i(j, k), u_m(j, k)), \qquad m \neq i, 1 \leq i, m \leq 8, 1 \leq j < k \leq 3.$$

Furthermore, from $(u_{i\pm 4}, 0, 0, 0)(u_i, 0, 0, 0)^2$, $(0, u_{i\pm 4}, 0, 0)(0, u_i, 0, 0)^2$, $(0, 0, u_{i\pm 4}, 0)(0, 0, u_i, 0)^2$, we find in \mathfrak{L}^3 the following:

Now we show that $E(v, w) \in \mathbb{R}^4$ for all basis vectors v, w for \mathfrak{I}' . Since $E(u_i(j, k), u_{i\pm 4}(j, k)) \in \mathbb{R}^2$ by (21), it follows that $E(u_i(j, k), u_i(j, k)) \in \mathbb{R}^4$;

combined with (26) and the fact that $\mathfrak{L} = [\mathfrak{L}\mathfrak{L}] \subseteq \mathfrak{L}^2$, this yields $E(u_i(j,k),u_m(j,k)) \in \mathfrak{L}^4$ for all $i, m, 1 \leq i, m \leq 8$, and for $1 \leq j < k \leq 3$. Following the elements (23), (24), (25) by suitable $(0, 0, 0, T), T \in \mathfrak{D}_4$, yields in \mathfrak{L}^4 all $E(u_i(j, k), u_m(j', k')), 1 \leq i, m \leq 8, 1 \leq j < k \leq 3, 1 \leq j' < k' \leq 3$. Next, following an $E(u_i(1, 2), u_j(1, 3)) \in \mathfrak{L}^3$ by $(0, u_{j\pm 4}, 0, 0)$ gives $E(u_i(1, 2), w_1) + E(u_i(1, 2), w_2) \in \mathfrak{L}^4$. Since $E(u_i(1, 2), w_1) \in \mathfrak{L}^3 \subseteq \mathfrak{L}^4$ by (22), we have $E(u_i(1, 2), w_2) \in \mathfrak{L}^4$. Similarly, all $E(u_i(1, 3), w_1)$ and all $E(u_i(1, 3), w_2)$ are in \mathfrak{L}^3 , as well as all $E(u_i(2, 3), w_1)$; all $E(u_i(2, 3), w_2)$ are in $\mathfrak{L}^3 \subseteq \mathfrak{L}^4$.

It remains to show that $E(w_m, v) \in \mathbb{R}^4$, m=1, 2, for all basis vectors v. by using the fact that for each k, there are an i and a j such that $u_k(2, 3) = \lambda u_i(1, 2)(0, u_j, 0, 0)$, $\lambda \in \mathfrak{F}$, we can follow $2E(w_1, u_i(1, 2)) - E(w_2, u_i(1, 2)) \in \mathbb{R}^3$ by $\lambda^{-1}(0, u_j, 0, 0)$ to obtain $2E(w_1, u_k(2, 3)) - E(w_2, u_k(2, 3)) \in \mathbb{R}^4$ for all k. Combined with (27), this yields $E(w_n, u_i(2, 3)) \in \mathbb{R}^4$, n=1, 2, $1 \le i \le 8$. Similarly we see that all $E(w_n, u_i(j, k)) \in \mathbb{R}^4$. Following the first element in (27) by $(u_{i\pm 4}, 0, 0, 0)$, the second by $(0, u_{i\pm 4}, 0, 0)$, the third by $(0, 0, u_{i\pm 4}, 0)$ yields, respectively, $2E(w_1, w_1) - E(w_2, w_1)$, $E(w_1, w_2) + E(w_2, w_2) + E(w_1, w_1) + E(w_2, w_1)$, $E(w_1, w_2) - 2E(w_2, w_2) \in \mathbb{R}^4$. Finally, computing $(u_1, 0, 0, 0) \cdot (0, u_2, 0, 0)(0, 0, u_3, 0) \in \mathbb{R}^3 \subseteq \mathbb{R}^4$ yields in \mathbb{R}^4 a linear combination of matrix units other than $E(w_i, w_j)$ together with a term in $2E(w_1, w_2) - E(w_2, w_2)$; together with the above, this shows all $E(w_i, w_j) \in \mathbb{R}^4$, i, j = 1, i,

Now we know that if $D \in \mathcal{X}_{\alpha}$ for some $\alpha \neq 0$, then (ad $D)^3 = 0$; combining this fact with the result $\mathfrak{X}^4 = \mathfrak{E}(\mathfrak{X}')$ of Lemma 1 and with Lemma 1 of [10], we know that since D is nilpotent (see [10]), $D^9 = D^{4(3-1)+1} = 0$ on \mathfrak{X}' . Since ID = 0, we have $D^9 = 0$ for all elements D of all root-spaces \mathfrak{X}_{α} , $\alpha \neq 0$, relative to standard Cartan subalgebras of \mathfrak{X} . We shall need the results of \mathfrak{X} 1 of [10] which are valid when $D^{2^{-1}(p+1)} = 0$, where p is the characteristic of \mathfrak{X} (if $p \neq 0$). Thus we assume in the sequel that the characteristic of \mathfrak{X} is either zero or a prime p > 13.

Hence the mapping sending $A \in \mathfrak{A}(\mathfrak{F})$ onto the automorphism $I_A: X$

 $\to A^{-1}XA$ of $\mathfrak X$ is one-one and an isomorphism of $\mathfrak X(\mathfrak X)$ into $\mathfrak X(\mathfrak X)$. In the algebraically closed case, every automorphism of $\mathfrak X$ is an invariant automorphism [9], hence of the form $X\to A^{-1}XA$, $A\in\mathfrak X(\mathfrak X)$, and the mapping $A\to I_A$ is an isomorphism of $\mathfrak X(\mathfrak X)$ onto $\mathfrak X(\mathfrak X)$. As in the case of G_2 in [10] we can show that this result remains valid even if $\mathfrak X$ is not algebraically closed. Namely:

If \Re is the algebraic closure of \Re , then $\Im_{\mathbf{g}}$ is the split exceptional Jordan algebra over \Re , and $\Re_{\mathbf{g}}$ is the derivation algebra of $\Im_{\mathbf{g}}$. If σ is an automorphism of \Re , σ has a unique extension to an automorphism of $\Re_{\mathbf{g}}$; hence we have, for this extension σ , $X^{\sigma} = A^{-1}XA$ for some $A \in \mathfrak{A}(\Im_{\mathbf{g}})$, all $X \in \Re_{\mathbf{g}}$. In particular, this relation holds for all $X \in \Re$. Thus there is a nonsingular linear transformation B of \Im such that $X^{\sigma} = B^{-1}XB$ for all $X \in \Re$ [11]. Now B maps \Im' into \Im' , since $\Im' \Re = \Im' \Re$ implies $\Im' B = \Im' \Re B = \Im' B(B^{-1}\Re B) = \Im' B \Re \subseteq \Im \Re = \Im'$. Since $\Re^4 = \mathfrak{E}(\Im')$, $(\Re_{\mathbf{g}})^4 = \mathfrak{E}(\Im'_{\mathbf{g}})$; now $A^{-1}B_{\mathbf{g}}$ maps $\Im'_{\mathbf{g}}$ into $\Im'_{\mathbf{g}}$ and commutes elementwise with $\Re_{\mathbf{g}}$, so that $A^{-1}B_{\mathbf{g}} = \lambda I$ on $\Im'_{\mathbf{g}}$, $\lambda \in \Re$, or $B_{\mathbf{g}} = \lambda A$, $0 \neq \lambda \in \Re$. But $u_7(1, 3)B/2 = (u_1(1, 2) \cdot u_2(2, 3))B = \lambda(u_1(1, 2) \cdot u_2(2, 3))A = \lambda(u_1(1, 2)A) \cdot (u_2(2, 3)A) = \lambda^{-1}(u_1(1, 2)B) \cdot (u_2(2, 3)B)$, so that $\lambda \in \Re$, $A \mid \Im' \in \mathfrak{E}(\Im')$, and $A = C_{\mathbf{g}}$, $C \in \mathfrak{A}(\Im)$. Thus we have $X^{\sigma} = C^{-1}XC$, $C \in \mathfrak{A}(\Im)$. As above $C^{-1}XC = X$ for all $X \in \Re$ only if C = I. Thus the mapping $A \to I_A$ is again an isomorphism of $\mathfrak{A}(\Im)$ onto $\mathfrak{A}(\Re)$.

THEOREM 2. Except when \mathfrak{F} is of prime characteristic between 2 and 13, the mapping $A \to I_A$ which assigns to the automorphism A of the split exceptional Jordan algebra \mathfrak{F} over \mathfrak{F} the automorphism $X \to A^{-1}XA$ of the Lie algebra \mathfrak{F} of derivations of \mathfrak{F} is an isomorphism of the full automorphism group $\mathfrak{A}(\mathfrak{F})$ of \mathfrak{F} onto the full automorphism group of \mathfrak{F} .

4. Invariant automorphisms and the group of Chevalley. The group G' of Chevalley formed over \mathfrak{F} from a complex Lie algebra of type F_4 may be regarded as acting in \Re via the mappings $\exp(\lambda \operatorname{ad}(X))$, where X runs through a complete set of root-vectors relative to a fixed standard Cartan subalgebra $\mathfrak F$ of $\mathfrak L$, the fundamental system of roots relative to $\mathfrak F$ being of type F_4 (see [2; 10]). By Theorem 9 of [8], there is an automorphism σ of \Re mapping the Cartan subalgebra \mathfrak{F}_1 of \mathfrak{L} spanned by the h_i , $1 \leq i \leq 4$, onto \mathfrak{F}_n , and the rootvectors relative to \mathfrak{H}_1 , as listed above, onto those relative to \mathfrak{H} . We have $X^{\sigma} = A^{-1}XA$, $A \in \mathfrak{A}(\mathfrak{J})$. Now $(\operatorname{ad}(X^{\sigma}))^3 = 0$ and $(X^{\sigma})^9 = 0$ by §2, where X runs through the root-vectors relative to \mathfrak{H}_1 , so that $Y \exp(\lambda \operatorname{ad}(X^{\sigma}))$ $=(\exp(\lambda X^{\sigma}))^{-1}Y(\exp(\lambda X^{\sigma}))$ for all $Y \in \mathbb{R}$, and G' is the isomorphic image under $B \rightarrow I_B$ of the subgroup \mathfrak{G} of $\mathfrak{A}(\mathfrak{J})$ generated by all $\exp(\lambda X^{\sigma})$. The group $A \otimes A^{-1}$ is the subgroup of $\mathfrak{A}(\mathfrak{J})$ generated by all $\exp(\lambda X)$, where X runs through the root-vectors relative to \mathfrak{F}_1 . We show $A \mathfrak{G} A^{-1} = \mathfrak{A}(\mathfrak{F})$. Then it follows that $\mathfrak{G} = \mathfrak{A}(\mathfrak{F})$, and that $G' = \mathfrak{A}(\mathfrak{F}) \cong \mathfrak{A}(\mathfrak{F})$. Since the group $\mathfrak{s}(\mathfrak{F})$ of invariant automorphisms of \mathcal{L} contains G', it follows that $G' = \mathfrak{g}(\mathcal{L}) = \mathfrak{A}(\mathcal{L})$ $\cong \mathfrak{A}(\mathfrak{J})$. (The fact that $\mathfrak{A}(\mathfrak{J})$ is simple, proved by Jacobson [7], coupled with the fact that $\mathfrak{I}(\mathfrak{L})$ is a normal subgroup of $\mathfrak{A}(\mathfrak{L})$, shows that $\mathfrak{I}(\mathfrak{L}) = \mathfrak{A}(\mathfrak{L})$ $\simeq \mathfrak{A}(\mathfrak{F})$, but our result is somewhat sharper and, combined with Chevalley's proof of the simplicity of G', gives another proof of the simplicity of $\mathfrak{A}(\mathfrak{J})$.) We first investigate the effects of all $\exp(\lambda e_{\beta})$, where e_{β} runs through $2(u_i, 0, 0, 0)$, $2(0, u_i, 0, 0)$, $2(0, 0, u_i, 0)$, and 2(0, 0, 0, T), belonging to the roots $\pm \beta_1, \cdots, \pm \beta_{24}$ relative to \mathfrak{F}_1 : With $b = \operatorname{diag}\{\beta_1, \beta_2, \beta_3\} + b_{12}(1, 2) + b_{13}(1, 3) + b_{23}(2, 3)$, we have

$$b \exp(2\lambda(u_{i}, 0, 0, 0)) = b + \lambda \left[\operatorname{diag}\left\{-2(b_{12}, u_{i}), 2(b_{12}, u_{i}), 0\right\} + (\beta_{1} - \beta_{2})u_{i}(1, 2) - (u_{i}b_{23})(1, 3) + (\bar{u}_{i}b_{13})(2, 3)\right] - 2\lambda^{2}(b_{12}, u_{i})u_{i}(1, 2);$$

$$b \exp(2\lambda(0, u_{i}, 0, 0)) = b + \lambda \left[\operatorname{diag}\left\{-2(b_{13}, u_{i}), 0, 2(b_{13}, u_{i})\right\} - (u_{i}b_{23})(1, 2) + (\beta_{1} - \beta_{3})u_{i}(1, 3) + (b_{12}u_{i})(2, 3)\right] - 2\lambda^{2}(b_{13}, u_{i})u_{i}(1, 3);$$

$$b \exp(2\lambda(0, 0, u_{i}, 0)) = b + \lambda \left[\operatorname{diag}\left\{0, -2(b_{23}, u_{i}), 2(b_{23}, u_{i})\right\} - (b_{13}\bar{u}_{i})(1, 2) + (b_{12}u_{i})(1, 3) + (\beta_{2} - \beta_{3})u_{i}(2, 3)\right] - 2\lambda^{2}(b_{23}, u_{i})u_{i}(2, 3);$$

$$b \exp(2\lambda(0, 0, 0, T)) = b + \lambda \left[(b_{12}T)(1, 2) + (b_{13}T^{\psi})(1, 3) + (b_{23}T^{\psi})(2, 3)\right].$$

Now let $B \in \mathfrak{A}(\mathfrak{J})$. We show that by a succession of right multiplications of B by transformations (28), B can be converted into the identity. Since the transformations (28) generate $A \otimes A^{-1}$, it will follow that $B \in A \otimes A^{-1}$, so that $A \otimes A^{-1} = \mathfrak{A}(\mathfrak{J})$, as asserted.

Now B sends $u_1(1, 2)$ into $u_1(1, 2)B = c = \text{diag}\{\gamma_{11}, \gamma_{22}, \gamma_{33}\} + c_{12}(1, 2)$ $+c_{13}(1, 3)+c_{23}(2, 3)$. We first show that when c_{12} is written in terms of the basis $\{u_i\}$ of \mathbb{C} , we may assume that the coefficient α_1 of u_1 is 1. Suppose first that $\alpha_1 \neq 0$. Then choose λ so that, if α_2 is the coefficient of u_2 in c_{12} , $\lambda \alpha_1 + \alpha_2 \neq 0$, and follow B by $\exp(2\lambda(0, 0, 0, E_{12} - E_{65}))$; the new automorphism sends $u_1(1, 2)$ into an element of \Im having in the (1, 2)-position $\alpha_1 u_1 + (\alpha_2 + \lambda \alpha_1) u_2$ $+\cdots$, $\alpha_2+\lambda\alpha_1\neq 0$, and is in $A\otimes A^{-1}$ if and only if B is; thus we may assume $\alpha_2 \neq 0$ in B. But then if we follow B by $\exp(2(1-\alpha_1)\alpha_2^{-1}(0, 0, 0, E_{21}-E_{56}))$ we obtain in the (1, 2)-position $(\alpha_1+(1-\alpha_1)\alpha_2^{-1}\alpha_2)u_1+\cdots=u_1+\cdots$, i.e., $\alpha_1 = 1$ as desired. Thus we may assume c_{12} has the desired form unless $\alpha_1 = \alpha_2$ =0. If α_i , the coefficient of u_i in c_{12} , is nonzero for i among 3, 4, 6, 7, 8, a similar procedure can be used to make $\alpha_1 = 1$. If all these are zero, and if $\alpha_{\delta} \neq 0$, a combination of two of the types $\exp(2\lambda(0, 0, 0, T))$ can be used to make $\alpha_1 = 1$. Thus we need only treat the case where $c_{12} = 0$. If $c_{13} \neq 0$ then for some i, $c_{13}\bar{u}_i\neq 0$, so that following B by $\exp(2(0, 0, u_i, 0))$ makes $c_{12}\neq 0$, and we can proceed as before to make $\alpha_1 = 1$. Similarly, for $c_{23} \neq 0$ we use a suitable $\exp(2(0, u_i, 0, 0))$. Thus we may assume $c_{12} = c_{13} = c_{23} = 0$. Now, not both of $\gamma_{11} - \gamma_{22}$, $\gamma_{11} - \gamma_{33}$ are zero, since this implies $\gamma_{11} = \gamma_{22} = \gamma_{33}$, and $u_1(1, 2)B$ has trace $3\gamma_{11} \neq 0$ unless $u_1(1, 2)B = 0$. But $u_1(1, 2)B \in \mathcal{J}'$, so that $u_1(1, 2)B = 0$, a contradiction to the assumption that B was an automorphism. Thus if $\gamma_{11}-\gamma_{22}\neq 0$, we follow B by $\exp(2(u_i, 0, 0, 0))$ for any i to obtain $c_{12}\neq 0$; if $\gamma_{11}-\gamma_{22}=0$ then $\gamma_{11}-\gamma_{33}\neq 0$, and following B by $\exp(2(0, u_i, 0, 0))$ makes $c_{13}\neq 0$. In either case the reduction to $\alpha_1=1$ can now be made as before. Thus we may assume $\alpha_1=1$ in B.

Next we show that we may assume $u_1(1, 2)B = u_1(1, 2)$. First of all, follow B by $\exp(2\lambda_i(0, u_i, 0, 0))$, $i \in C(1)$, adding to c_{12} the element $-\lambda_i u_i \bar{c}_{23}$, in which the coefficient of u_1 is zero. Thus $\alpha_1 = 1$ stays fixed, and suitable choice of the λ_i makes the coefficient of u_j in c_{23} into 0 for all $j \in D(1)$: $c_{23} \rightarrow c_{23} + \lambda_i \bar{c}_{12} u_i$. Similarly, follow the new B by $\exp(2\lambda_i(0, 0, u_i, 0))$, $i \in C(1)$; then the form of c_{23} obtained above is unchanged, as is the property $\alpha_1 = 1$, and with suitable choice of the λ_i , the coefficient of u_j in c_{13} is made into zero for each $j \in D(1)$. Thus we may assume c_{13} and c_{23} have these forms, and that $\alpha_1 = 1$. Now operate with $\exp(2\lambda(0, 0, 0, T))$, $T = E_{12} - E_{65}$, $E_{13} - E_{75}$, $E_{14} - E_{85}$; the first two of these T's are fixed under ϕ and ψ , and $(E_{14} - E_{85})^{\psi} = E_{14} - E_{85}$, $(E_{14} - E_{85})^{\psi} = 2(E_{63} - E_{72})$. The properties above are unchanged, and the coefficients of u_2 , u_3 , u_4 in c_{12} are replaced by 0.

Now apply $\exp(2\lambda(0,0,0,T))$, $T=E_{16}-E_{25}$, $E_{17}-E_{35}$, $E_{18}-E_{45}$; by checking T^{ϕ} and T^{ψ} from (19), we see that all our earlier properties of B are unchanged, and one obtains $c_{12}=u_1+\alpha_5u_5$, $c_{13}=\sum_{i\in C(1)}\beta_iu_i$, $c_{23}=\sum_{i\in C(1)}\gamma_iu_i$. We may thus assume that B has this form. Now apply $\exp(2\lambda(u_5,0,0,0))$, leaving the above properties fixed, and altering the diagonal by the subtraction of a nonzero multiple of w_1 , if $\lambda \neq 0$. Since $u_1(1,2) \in \mathcal{F}'$, we have $\operatorname{diag}\left\{\gamma_{11},\gamma_{22},\gamma_{33}\right\} = \delta_1w_1+\delta_2w_2$, and suitable choice of λ makes $\delta_1=0$. Thus we may assume $c=u_1(1,2)B=\delta_2w_2+(u_1+\alpha_5u_5)(1,2)+\sum_{i\in C(1)}\beta_iu_i(1,3)+\sum_{i\in C(1)}\gamma_iu_i(2,3)$. From $u_1(1,2)\cdot u_1(1,2)=0$ we have $c\cdot c=0$; now $c\cdot c$ has in its (1,2)-position $2\delta_2(u_1+\alpha_5u_5)+2c_{13}\bar{c}_{23}$, and the coefficient of u_1 in $c_{13}\bar{c}_{23}$ is 0; thus $\delta_2=0$. Then the entry in the (1,3)-position in $c\cdot c$ is $0=2c_{12}c_{23}$, or $0=u_1c_{23}+\alpha_5u_5c_{23}=\gamma_2u_7/2+\gamma_4u_1-\gamma_3u_6/2-\gamma_5u_8+\sum_{i\in C(1)}\kappa_iu_i$, from which $\gamma_2=\gamma_3=\gamma_4=\gamma_5=0$ and $c_{23}=0$. Likewise, from the fact that the element in the (2,3)-position in $c\cdot c$ is zero it follows that $c_{13}=0$, and $c=(u_1+\alpha_5u_5)(1,2)$, $0=c\cdot c=4$ diag $\{\alpha_5,\alpha_5,0\}$, and $\alpha_5=0$, $u_1(1,2)B=c=u_1(1,2)$. We assume this in the sequel.

Next let $u_1(1, 3)B = c$ as above; from $u_1(1, 2) \cdot u_1(1, 3) = 0$, we have $0 = (u_1(1, 2)B) \cdot c = u_1(1, 2) \cdot c$. It follows that $\alpha_5 = 0 = \delta_2$, $c_{13} = \sum_{i \in D(1)} \beta_i u_i$, $c_{23} = \sum_{i \in D(1)} \gamma_i u_i$, where the notation is as above. Now we show that we may assume $\beta_1 = 1$. If β_6 , β_7 , or β_8 is nonzero, follow B by $\exp(2\lambda(0, 0, 0, T))$, for $T = E_{34} - E_{87}$, $E_{24} - E_{86}$, $E_{27} - E_{36}$, respectively, with suitable λ , to make $\beta_1 = 1$, leaving $u_1(1, 2)$ fixed. Thus our result is achieved unless $\beta_6 = \beta_7 = \beta_8 = 0$. If this is the case, and if $\beta_1 \neq 0$, follow B by $\exp(2\lambda(0, 0, 0, E_{74} - E_{83}))$ to make $\beta_6 \neq 0$, still leaving $u_1(1, 2)$ fixed; then proceed as above. Thus we may assume either $\beta_1 = 1$ or $c_{13} = 0$. In the latter case, if $\gamma_i \neq 0$, $i \neq 8$, follow B by an $\exp(2(u_j, 0, 0, 0))$, $j \in D(1)$, $j \neq 1$. Then $u_1(1, 2)$ is fixed, but the new c_{13} is $-\sum_{i \in D(1)} \gamma_i u_i u_i \neq 0$ for suitable j. Hence we may assume that either $\beta_1 = 1$ or that $c_{13} = 0$, $c_{23} = \gamma_8 u_8$. If $\delta_1 \neq 0$, apply $\exp(2(0, u_1, 0, 0))$, leaving $u_1(1, 2)$

fixed and making $c_{13}\neq 0$. Consequently we may assume either $\beta_1=1$ or $c=c_{12}(1,2)+\gamma_8u_8(2,3)$, and $\alpha_5=0$ by earlier observations. If $\alpha_i\neq 0$, $i\in D(1)$, $i\neq 1$, follow B by suitable $\exp(2(0,0,u_j,0))$, $j\in D(1)$, $j\neq 8$, leaving $u_1(1,2)$ fixed and making $c_{13}\neq 0$, so we may assume $c_{12}=\sum_{i=1}^4\alpha_iu_i$. If $\gamma_8\neq 0$, apply $\exp(2(u_6,0,0,0))$, leaving $u_1(1,2)$ fixed and making $c_{13}\neq 0$. Thus either $\beta_1=1$ or $c=\sum_{i=1}^4\alpha_iu_i(1,2)$ may be assumed. In the second case, if $\alpha_i\neq 0$, $i\neq 1$, follow by $\exp(2(u_{i+4},0,0,0))$, leaving $u_1(1,2)$ fixed and making $\delta_1\neq 0$. Thus we may assume $\beta_1=1$ unless $u_1(1,3)B=\alpha_1u_1(1,2)=\alpha_1u_1(1,2)B$; the latter is impossible since B is an automorphism, and we may therefore assume

$$\beta_1 = 1, \ c = \delta_1 w_1 + \sum_{i \neq 5} \alpha_i u_i(1, 2) + u_1(1, 3) + \sum_{i \in D(1), i \neq 1} \beta_i u_i(1, 3) + \sum_{i \in D(1)} \gamma_i u_i(2, 3).$$

Now we show that we may assume $u_1(1, 3)B = u_1(1, 3)$. First operate with $\exp(2\lambda_i(u_i, 0, 0, 0)), i=2, 3, 4$; these leave $u_1(1, 2)$ fixed, the coefficient 1 of u_1 in c_{13} is left fixed, and for $j \in D(1)$, $j \neq 1$, and i = 2, 3, 4, $\bar{u}_i u_j = 0, -u_8$, or $2u_8$. Also $\bar{u}_i u_1$ is a nonzero scalar multiple of u_7 , u_6 , u_1 , respectively. Hence with suitable λ_i we make c_{23} into $\gamma_8 u_8$. Next operate with $\exp(2\lambda(0, 0, u_8, 0))$; $u_1(1, 2)$ is fixed, the coefficient of u_1 in c_{13} remains 1, and c_{23} retains its form. The coefficient α_1 of u_1 in c_{12} is replaced by $\alpha_1-2\lambda$, so becomes zero for $\lambda = 2^{-1}\alpha_1$. We may therefore assume that $\alpha_1 = 0$. Now apply $\exp(2\lambda(0, 0, 0, T))$ for $T = E_{74} - E_{83}$, $E_{64} - E_{82}$, $E_{63} - E_{72}$. Again $u_1(1, 2)$ is fixed, as is the coefficient 1 of u_1 in c_{13} , the coefficient 0 of u_1 in c_{12} , and, from the values of T^{ϕ} , c_{23} $=\gamma_8 u_8$ is unchanged. The values of T^{ψ} show that for suitable λ we can make $\beta_6 = \beta_7 = \beta_8 = 0$ and thus assume $c = \delta_1 w_1 + \sum_{i \neq 1, 5} \alpha_i u_i(1, 2) + u_1(1, 3)$ $+\gamma_8 u_8(2, 3)$. The entry in the (1, 2)-position of $c \cdot c$ is $4\gamma_8 u_1 u_4 = 4\gamma_8 u_1$. But $c \cdot c = 0$, since $u_1(1, 3) \cdot u_1(1, 3) = 0$; hence $\gamma_8 = 0$. Then the entry in the (1, 3)position of $c \cdot c$ is $2\delta_1 u_1$, so $\delta_1 = 0$. The entry in the (2, 3)-position of $c \cdot c$ is now $2\bar{c}_{12}u_1 = \alpha_2u_7 - \alpha_3u_6 + 4\alpha_4u_1$, so $\alpha_2 = \alpha_3 = \alpha_4 = 0$, and $c = (\alpha_6u_6 + \alpha_7u_7 + \alpha_8u_8)(1, 2)$ $+u_1(1, 3) = u_1(1, 3)B$. Next we observe that $u_1(1, 2) \cdot u_4(2, 3) = u_1(1, 3)$, so that $u_1(1, 2) \cdot u_4(2, 3)B = u_1(1, 3)B = c$. However, the entry in the (1, 2)position of $u_1(1, 2) \cdot d$ for any $d \in J$ is a scalar multiple of u_1 . Hence $\alpha_6 = \alpha_7$ $=\alpha_8=0$, and $u_1(1, 3)B=u_1(1, 3)$. Thus we may assume both $u_1(1, 2)$ and $u_1(1, 3)$ fixed under B.

Now if $c = u_4(2, 3)B$ as above, we have $u_1(1, 2) \cdot c = u_1(1, 3)$, from the last paragraph, and $u_1(1, 3) \cdot c = 0$ by $u_1(1, 3) \cdot u_4(2, 3) = 0$. It follows that $\alpha_5 = 0$ $= \delta_2 = \beta_3 = \beta_4 = \beta_5 = \gamma_2 = \gamma_3 = \gamma_5 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_8 = \delta_1 - \delta_2 = \gamma_4 - 1$. Thus $c = \sum_{i \in D(1)} \alpha_i u_i(1, 2) + \sum_{i \in D(1)} \beta_i u_i(1, 3) + \sum_{i \in D(1), i \neq 8} \gamma_i u_i(2, 3) + u_4(2, 3)$. Now apply $\exp(2\beta_1(u_1, 0, 0, 0))$, leaving $u_1(1, 2)$ and $u_1(1, 3)$ fixed, and replacing β_1 by 0. Thus we may assume $\beta_1 = 0$. Next apply $\exp(2\alpha_i(0, u_i, 0, 0))$, i = 6, 7, 8, leaving $u_1(1, 2)$, $u_1(1, 3)$, c_{13} unchanged, and replacing α_i by 0, i = 6, 7, 8. Thus we assume $c = \alpha_1 u_1(1, 2) + \sum_{i \in D(1), i \neq 1} \beta_i u_i(1, 3) + u_4(2, 3)$

 $+\sum_{i\in D(1), i\neq 8} \gamma_i u_i(2, 3)$. Next operate with exp(2λ(0, 0, 0, T)), $T=E_{54}-E_{81}$, $E_{53}-E_{71}$, $E_{52}-E_{61}$; $u_1(1, 2)$ and c_{12} are unchanged, and the values of T^{ψ} show that $u_1(1, 3)$ and c_{13} are unchanged. Those of T^{ψ} show that suitable values of λ make all γ_i , i=1, 6, 7, into 0. Thus we may assume $c=\alpha_1 u_1(1, 2)+\sum_{i\in D(1), i\neq 1} \beta_i u_i(1, 3)+u_4(2, 3)$. From $c\cdot c=0$ we now have $c_{13}\bar{u}_4=0=c_{13}u_8=2c_{13}$, so $c_{13}=0$; also $\alpha_1 u_1 u_4=0=\alpha_1 u_1$; hence $\alpha_1=0$, and $c=u_4(2, 3)$. Thus the following may be assumed fixed under $B: u_1(1, 2), u_1(1, 3), u_4(2, 3)$.

As above, we now have $u_1(1, 2) \cdot u_1(2, 3)B = 0 = u_1(1, 3) \cdot u_1(2, 3)B = u_4(2, 3) \cdot u_1(2, 3)B$. It follows that if $u_1(2, 3)B = c$ as above, then

$$c = (\alpha_6 u_6 + \alpha_7 u_7 + \alpha_8 u_8)(1, 2) + \beta_1 u_1(1, 3) + (\gamma_1 u_1 + \gamma_6 u_6 + \gamma_7 u_7)(2, 3).$$

From $u_1(2,3)B = -u_1(1,2) \cdot u_4(1,3)B$, we have $\alpha_6 = \alpha_7 = \alpha_8 = 0$. Moreover, not all of $\gamma_1, \gamma_6, \gamma_7$ can be zero, since $u_1(2,3)B \neq \beta_1 u_1(1,3)B = \beta_1 u_1(1,3)$. Now consider $\exp(2\lambda(0,0,0,T))$, where T is chosen from among $E_{42} - E_{68}$, $E_{43} - E_{78}$, $E_{24} - E_{87}$, $E_{24} - E_{86}$. Then $T^{\psi} = T$ and T^{ϕ} is among $(E_{17} - E_{36})/2$, $-(E_{16} - E_{26})/2$, $2(E_{52} - E_{61})$, $-2(E_{53} - E_{71})$, respectively. Thus $u_1(1,2)$, $u_1(1,3)$, $u_4(2,3)$ are fixed, and by suitable choice of λ we may use one of the first two types to make either $\gamma_6 \neq 0$ or $\gamma_7 \neq 0$. Then suitable choice of λ and one of the last two types makes $\gamma_1 = 1$. The first two types may then be used to make $\gamma_6 = \gamma_7 = 0$, with $\gamma_1 = 1$. We may therefore assume $u_1(2,3)B = \beta_1 u_1(1,3) + u_1(2,3)$. Finally, an application of an appropriate $\exp(2\lambda(u_8,0,0))$ makes β_1 into 0 and leaves all other properties of B fixed. We may therefore assume $u_1(j,k)$, $1 \leq j < k \leq 3$, and $u_4(2,3)$ fixed under B.

From $u_1(1, 2) \cdot u_4(1, 3)B = -u_1(2, 3)$, $u_1(2, 3) \cdot u_4(1, 3)B = 0 = u_1(2, 3)$ $\cdot u_4(1, 3)B = u_4(2, 3) \cdot u_4(1, 3)B$, it follows as above that $u_4(1, 3)B = (\alpha_6 u_6 + \alpha_7 u_7)(1, 2) + (\beta_1 u_1 + u_4)(1, 3) + (\gamma_1 u_1 + \gamma_6 u_6 + \gamma_7 u_7)(2, 3)$. Now operate with $\exp(2\lambda(0, 0, u_i, 0))$, i = 6, 7. The $u_1(j, k)$ and $u_4(2, 3)$ are fixed and for suitable values of λ the coefficients α_6 , α_7 are replaced by 0. Thus we may assume $\alpha_6 = \alpha_7 = 0$. Next operate with $\exp(2\lambda(0, 0, 0, T))$, $T = E_{41} - E_{58}$; $T^{\psi} = T$ and $T^{\phi} = -(E_{27} - E_{36})/2$, so that all $u_1(j, k)$ and $u_4(2, 3)$ are fixed, and $u_4(1, 3)B$ is changed only by the replacement of β_1 by $\beta_1 + \lambda$. With $\lambda = -\beta_1$, we make β_1 into 0, and may assume $u_4(1, 3)B = u_4(1, 3) + (\gamma_1 u_1 + \gamma_6 u_6 + \gamma_7 u_7)(2, 3)$. Since this element must have square zero, $\gamma_6 = \gamma_7 = 0$; from $u_4(1, 3)B = u_4(1, 2)B \cdot u_4(2, 3)$, it follows that $\gamma_1 = 0$, and $u_4(1, 3)$ may also be assumed fixed under B.

Next consider $u_4(1, 2)B$. From $u_1(1, 2) \cdot u_4(1, 2)B = 0 = u_4(1, 2)B \cdot u_1(2, 3)$ = $u_4(1, 2)B \cdot u_4(1, 3)$, and from $u_4(1, 2)B \cdot u_1(1, 3) = u_1(2, 3)$, $u_4(1, 2)B \cdot u_4(2, 3)$ = $u_4(1, 3)$, we see as before that $u_4(1, 2)B = (u_4 + \alpha_6 u_6 + \alpha_7 u_7)(1, 2) + \beta_1 u_1(1, 3) + \gamma_1 u_1(2, 3)$, and from $u_4(1, 2)B \cdot u_4(1, 2)B = 0$, that $\beta_1 = 0$. Now exp $(2\lambda(0, u_1, 0, 0))$ leaves fixed all $u_1(j, k)$, as well as $u_4(1, 3)$ and $u_4(2, 3)$; in $u_4(1, 2)B$ it replaces γ_1 by $\gamma_1 + \lambda$, so that $\lambda = -\gamma_1$ makes γ_1 into 0, and enables us to assume $u_4(1, 2)B = (u_4 + \alpha_6 u_6 + \alpha_7 u_7)(1, 2)$. Now apply exp $(2\lambda(0, 0, 0, T))$, $T = E_{28} - E_{46}$, $E_{38} - E_{47}$; then all our fixed elements remain fixed, the form of

 $u_4(1, 2)B$ is unchanged, and we can make $\alpha_6 = \alpha_7 = 0$ by suitable choices of λ . Thus we may assume all $u_1(j, k)$ and all $u_4(j, k)$ fixed under B.

From $u_1(1, 2) \cdot u_8(1, 2) = 0 = u_8(1, 2) \cdot u_1(1, 3) = u_8(1, 2) \cdot u_1(2, 3) - 2u_1(1, 3)$, we have $u_8(1, 2)B = (\alpha_6u_6 + \alpha_7u_7 + u_8)(1, 2) + \beta_1u_1(1, 3) + (\gamma_1u_1 + \gamma_6u_6 + \gamma_7u_7)(2, 3)$. Now apply $\exp(2\lambda(0, 0, 0, T))$, $T = E_{34} - E_{87}$, $E_{24} - E_{86}$; all $u_1(j, k)$ and $u_4(j, k)$ remain fixed, and suitable choices of λ make α_6 and α_7 into 0. Next, applying $\exp(2\lambda(0, 0, u_1, 0))$ does not change any $u_1(j, k)$, $u_4(j, k)$, α_6 or α_7 , and for $\lambda = -\beta_1/2$ replaces β_1 by 0. We may thus assume $u_8(1, 2)B = u_8(1, 2) + (\gamma_1u_1 + \gamma_6u_6 + \gamma_7u_7)(2, 3)$. The fact that $u_8(1, 2)$ has square zero now implies $\gamma_1 = 0$, and $u_4(2, 3) = u_8(1, 2) \cdot u_4(1, 3)$ yields $\gamma_6 = \gamma_7 = 0$. Hence we may assume $u_8(1, 2)B = u_8(1, 2)$, giving another basis element fixed under B. From $u_4(1, 2) \cdot u_8(1, 2) = 2(w_1 + 2w_2 + 2I)/3$, we see that $w_1 + 2w_2 + 2I$ is fixed under B, hence that $w_1 + 2w_2$ is fixed under B.

Now we find as above that $u_8(2,3)B = (\alpha_6u_6 + \alpha_7u_7)(1,2) + (\beta_6u_6 + \beta_7u_7)(1,3) + (\gamma_1u_1 + u_8)(2,3)$. Applying $\exp(2\lambda(u_i,0,0,0))$, i=6, 7, leaves $u_1(j,k)$, $u_4(j,k)$ and $u_8(1,2)$ fixed and for suitable values of λ gives $\beta_6 = \beta_7 = 0$. Thus we may assume $\beta_6 = \beta_7 = 0$. Applying $\exp(2\lambda(0,0,0,T))$ for $T = E_{27} - E_{36}$ leaves these coefficients unchanged, as well as $u_1(j,k)$, $u_4(j,k)$ and $u_8(1,2)$, and for suitable λ makes γ_1 into 0. Thus we may assume $u_8(2,3)B = (\alpha_6u_6 + \alpha_7u_7)(1,2) + u_8(2,3)$. From the fact that $u_8(2,3)$ has square $0, \alpha_6 = \alpha_7 = 0$, and $u_8(2,3)$ may also be assumed fixed. Then $u_4(2,3) \cdot u_8(2,3)$ is fixed, so $2w_1 + w_2$ is fixed as above. It follows that w_1 and w_2 are both fixed. From $u_8(1,2) \cdot u_8(2,3) = 2u_8(1,3)$ it follows that $u_8(1,3)$ is fixed. Thus w_1 , w_2 , and $u_4(j,k)$, i=1,4,8, may be assumed fixed under B.

Now as before we find that $u_5(1, 2)B = (\alpha_1u_1 + u_5 + \alpha_6u_6 + \alpha_7u_7)(1, 2)$, and from $u_5(1, 2) \cdot u_5(1, 2) = 0$, that $\alpha_1 = 0$. Now apply $\exp(2\lambda(0, 0, 0, T))$ for $T = E_{21} - E_{55}$, $E_{31} - E_{57}$ to make $\alpha_6 = \alpha_7 = 0$, while leaving fixed all $u_i(j, k)$, i = 1, 4, 8. Thus we may assume $u_5(1, 2)$ fixed under B. Since $2u_5(1, 3) = u_5(1, 2) \cdot u_8(2, 3), -2u_5(2, 3) = u_5(1, 2) \cdot u_8(1, 3)$, all $u_5(j, k)$ are fixed, and all of $w_1, w_2, u_i(j, k), i = 1, 4, 5, 8$ may be assumed fixed.

As before, we now have $u_2(1,2)B = (\alpha_2u_2 + \alpha_3u_3)(1,2)$. Now apply $\exp(2\lambda(0, 0, 0, T))$ for $T = E_{23} - E_{76}$, $E_{32} - E_{67}$ to obtain first $\alpha_3 \neq 0$, then $\alpha_2 = 1$, then $\alpha_3 = 0$, as in similar situations previously. All elements formerly fixed remain fixed, and $u_2(1, 2)$ is now fixed. Thus we may assume $u_2(1, 2)B = u_2(1, 2)$. From $u_2(1, 2) \cdot u_4(2, 3) = u_2(1, 3)$, $u_2(1, 2) \cdot u_4(1, 3) = -u_2(2, 3)$, $u_2(1, 2) \cdot u_1(2, 3) = -u_7(1, 3)/2$, $u_2(1, 2) \cdot u_1(1, 3) = u_7(2, 3)/2$, $u_2(1, 3) \cdot u_1(2, 3) = u_7(1, 2)/2$, we see that all $u_2(j, k)$, $u_7(j, k)$ are fixed, therefore that all $u_4(j, k)$, $i \neq 3$, 6, may be assumed fixed.

It now follows as above that $u_3(1, 2)B = (\alpha_2 u_2 + u_3)(1, 2)$. Then we apply $\exp(-2\alpha_2(0, 0, 0, E_{32} - E_{67}))$, without changing any of our fixed vectors, to obtain $\alpha_2 = 0$, i.e., $u_3(1, 2)B = u_3(1, 2)$. As in the case of $u_2(1, 2)$ it follows that all $u_3(j, k)$, $u_6(j, k)$ may be assumed fixed. Thus B has been reduced to the identity, we have shown that $A \otimes A^{-1} = \mathfrak{A}(\mathfrak{F})$, and therefore $G' = \mathfrak{G}(\mathfrak{F}) = \mathfrak{A}(\mathfrak{F})$ $\cong \mathfrak{A}(\mathfrak{F})$. In summary, we have the

THEOREM 3. If $\mathfrak A$ is the Lie algebra of derivations of the split exceptional Jordan algebra $\mathfrak A$ over a field of characteristic different from 2, 3, 5, 7, 11, 13, then every automorphism of $\mathfrak A$ is an invariant automorphism; in fact, the automorphism group $\mathfrak A(\mathfrak A)$ is generated by all $\exp(\lambda \operatorname{ad}(X))$, where X runs through a set of root-vectors relative to a fixed standard Cartan subalgebra. The identification of the simple group G' of Chevalley, formed over the field $\mathfrak A$ from a complex Lie algebra of type F_4 , with such a subgroup of $\mathfrak A(\mathfrak A)$ shows that $G' = \mathfrak A(\mathfrak A) \cong \mathfrak A(\mathfrak A)$, the group of automorphisms of $\mathfrak A$.

5. Norm-skew transformations of \Im . Let \Im be the split exceptional Jordan algebra over the field \Im of characteristic $\neq 2$, 3. If $a = \operatorname{diag} \{ \alpha_{11}, \alpha_{22}, \alpha_{33} \} + a_{12}(1, 2) + a_{13}(1, 3) + a_{23}(2, 3) \in \Im$, set $\operatorname{Tr}(a) = \alpha_{11} + \alpha_{22} + \alpha_{33}$. Then one readily verifies that $(a, b) = \operatorname{Tr}(a \cdot b)$ is a symmetric bilinear form on \Im , and is associative (invariant) in the sense that $(a \cdot c, b) = (a, c \cdot b)$ for all $a, b, c \in \Im$. The form is nondegenerate; for if $b = \operatorname{diag} \{\beta_{11}, \beta_{22}, \beta_{33}\} + b_{12}(1, 2) + b_{13}(1, 3) + b_{23}(2, 3)$, then

$$(a, b) = 2(\alpha_{11}\beta_{11} + \alpha_{22}\beta_{22} + \alpha_{33}\beta_{33}) + 4[(a_{12}, b_{12}) + (a_{13}, b_{13}) + (a_{23}, b_{23})].$$

Thus if (a, b) = 0 for all b, we must have $\alpha_{11}\beta_{11} + \alpha_{22}\beta_{22} + \alpha_{33}\beta_{33} = 0$ for all $\beta_{11}, \beta_{22}, \beta_{33} \in \mathfrak{F}$, hence $\alpha_{11} = \alpha_{22} = \alpha_{33} = 0$; also $(a_{ij}, b_{ij}) = 0$ for all $b_{ij} \in \mathfrak{C}$, hence all $a_{ij} = 0$ by the nondegeneracy of the form on \mathfrak{C} , and a = 0.

We have seen in §1 that Tr(aD) = 0 for all $a \in \Im$ and all derivations D of \Im . Thus

(29)
$$0 = \text{Tr}((a \cdot b)D) = \text{Tr}((a \cdot bD) + (aD \cdot b)) = (a, bD) + (aD, b)$$

for all $a, b \in \mathcal{F}$, and every derivation of \mathcal{F} is skew with respect to (a, b). From the associativity of (a, b), it follows that the trilinear form $\tau(a, b, c) = (a \cdot b, c)$ is a symmetric function of its variables; for $\tau(a, b, c) = \tau(b, a, c)$ by commutativity in \mathcal{F} , and $\tau(a, b, c) = \tau(c, b, a)$ by associativity and the symmetry of (a, b). The result follows. Following Freudenthal [4], we define a modified trilinear form by

(30)
$$(a, b, c) = \tau(a, b, c) - \operatorname{Tr}(a)(b, c) - \operatorname{Tr}(b)(a, c) - \operatorname{Tr}(c)(a, b) + 2\operatorname{Tr}(a)\operatorname{Tr}(b)\operatorname{Tr}(c).$$

This form is evidently symmetric. If $a \in \mathcal{F}$ and if D is a derivation of \mathcal{F} , then $(a, a, aD) = \tau(a, a, aD) - \operatorname{Tr}(a)((aD, a) + (a, aD)) - \operatorname{Tr}(aD)(a, a) + 2\operatorname{Tr}(aD)\operatorname{Tr}(a)^2 = \tau(a, a, aD)$ by (29) and the fact that $\operatorname{Tr}(aD) = 0$. Now $\tau(a, a, aD) = \operatorname{Tr}(a \cdot (a \cdot aD)) = \operatorname{Tr}(a \cdot (a \cdot a)D) - \operatorname{Tr}(a \cdot (aD \cdot a)) = \operatorname{Tr}((a \cdot (a \cdot a)D)) - \operatorname{Tr}(aD \cdot (a \cdot a)) - \operatorname{Tr}(aD \cdot (aD \cdot a)) = \operatorname{Tr}((a \cdot (aD \cdot a))) - \operatorname{Tr}(aD \cdot (aD \cdot a)) = \operatorname{Tr}((aD \cdot a)D) - \operatorname{Tr}(aD \cdot (aD \cdot a)) = \operatorname{Tr}((aD \cdot a)D) - \operatorname{Tr}(aD \cdot aD \cdot aD) = \operatorname{Tr}((aD \cdot aD \cdot aD)D) = \operatorname{Tr}(aD \cdot aD \cdot aD) = \operatorname{Tr}(aD \cdot aD \cdot$

$$(31) (aD, b, c) + (a, bD, c) + (a, b, cD) = 0$$

for all a, b, $c \in \Im$ and all derivations D of \Im .

Conversely, if D is any linear transformation of \Im which is skew with respect to both the bilinear and trilinear forms, then D is a derivation of \Im . For, first of all, Tr(aD) = 0 for all $a \in \mathfrak{F}$; this follows since (I, ID) = 0 $=\operatorname{Tr}(I \cdot ID) = 2\operatorname{Tr}(ID)$ gives $\operatorname{Tr}(ID) = 0$, and then (a, I, ID) + (a, ID, I)+(aD, I, I) = 0 yields $0 = 2 \operatorname{Tr}(a \cdot (I \cdot ID)) + \operatorname{Tr}(aD \cdot (I \cdot I)) - 2 \operatorname{Tr}(a)\operatorname{Tr}(I \cdot ID)$ $-\operatorname{Tr}(aD)\operatorname{Tr}(I\cdot I)-2\operatorname{Tr}(ID)\operatorname{Tr}(a\cdot I)-2\operatorname{Tr}(I)\operatorname{Tr}(a\cdot ID)-2\operatorname{Tr}(I)\operatorname{Tr}(I\cdot aD)$ $+4 \operatorname{Tr}(a) \operatorname{Tr}(ID) \operatorname{Tr}(I) + 2 \operatorname{Tr}(aD) \operatorname{Tr}(I)^2 = -2(a, ID) + 4 \operatorname{Tr}(aD) = -2(a, ID)$ $-4 \operatorname{Tr}(aD) + 8 \operatorname{Tr}(aD) = -2(a, ID) - 2 \operatorname{Tr}(aD \cdot I) + 8 \operatorname{Tr}(aD)$ $= -2((a, ID) + (aD, I)) + 8 \operatorname{Tr}(aD) = 8 \operatorname{Tr}(aD)$. Thus $\operatorname{Tr}(aD) = 0$. Then for a, b, c arbitrary in \Im , we have $((a \cdot b)D - a \cdot bD - aD \cdot b, c) = -(a \cdot b, cD)$ $-(a \cdot bD, c) - (aD \cdot b, c) = -\tau(a, b, cD) - \tau(a, bD, c) - \tau(aD, b, c) = -(a, b, cD)$ $+\operatorname{Tr}(a)(b, cD)+\operatorname{Tr}(b)(a, cD)-(a, bD, c)+\operatorname{Tr}(a)(bD, c)+\operatorname{Tr}(c)(a, bD)$ -(aD, b, c) + Tr(b)(aD, c) + Tr(c)(aD, b), the remaining terms vanishing because Tr(aD) = Tr(bD) = Tr(cD) = 0. By (31), this is Tr(a)((b, cD) + (bD, c)) $+\operatorname{Tr}(b)((a, cD)+(aD, c))+\operatorname{Tr}(c)((a, bD)+(aD, b));$ by the skewness of D with respect to (x, y), this quantity vanishes. From the nondegeneracy of (x, y), it follows that $(a \cdot b)D - a \cdot bD - aD \cdot b = 0$, thus that D is a derivation of 3.

Next let $d \in \mathcal{J}$, $\operatorname{Tr}(d) = 0$, and consider $(a, a, a \cdot d)$. A lengthy but straightward computation in \mathcal{L} shows this to be zero. Then for all $a, b, c \in \mathcal{J}$, $(a \cdot d, b, c) + (a, b \cdot d, c) + (a, b, c \cdot d) = 0$, and the right multiplication R_d satisfies (31). In place of (29), we have

$$(32) (aR_d, b) = (a \cdot d, b) = (a, d \cdot b) = (a, b \cdot d) = (a, bR_d),$$

or R_d is symmetric with respect to the bilinear form.

Now let \mathfrak{L} be the space of linear transformations of \mathfrak{L} satisfying (31). Then \mathfrak{L} is a Lie algebra, and if the characteristic of \mathfrak{L} is a prime p(>3), then $T^p \in \mathfrak{L}$ for all $T \in \mathfrak{L}$ [10], and so \mathfrak{L} is a restricted Lie algebra under pth iterates in this case.

If R and S are symmetric linear transformations of \mathfrak{F} with respect to (x, y), then [RS] is skew. In particular if $a, b \in \mathfrak{F}'$, then $[R_aR_b]$ is skew with respect to both the bilinear and trilinear forms, hence is a derivation of \mathfrak{F} by the above. Moreover, if $a \in \mathfrak{F}$ and if D is a derivation of \mathfrak{F} , we have $aD \in \mathfrak{F}'$, and $[R_aD] = R_{aD}$. Since (x, y) is nondegenerate on \mathfrak{F} , the only transformation which is both skew and symmetric with respect to this form is 0. If \mathfrak{D} denotes the derivation algebra of \mathfrak{F} , we thus have $\mathfrak{D} \cap \mathfrak{R}_{\mathfrak{F}} = (0)$, where the meaning of $\mathfrak{R}_{\mathfrak{F}}$ is clear. Therefore $\mathfrak{R}_{\mathfrak{F}'} + \mathfrak{D} = \mathfrak{R}_{\mathfrak{F}'} \oplus \mathfrak{D}$, and is a Lie subalgebra of \mathfrak{F} by the remarks above. We prove that $\mathfrak{F} = \mathfrak{R}_{\mathfrak{F}'} \oplus \mathfrak{D}$ (observation of some of our later remarks will show that \mathfrak{F} is generated by $\mathfrak{R}_{\mathfrak{F}'}$). \mathfrak{F} will be called the Lie algebra of norm-skew transformations of \mathfrak{F} .

If $T \in \mathcal{R}$, then $(I, I, IT) = 0 = \text{Tr}((I \cdot I) \cdot IT) - 2 \text{Tr}(I) \text{Tr}(I \cdot IT) - \text{Tr}(IT) \text{Tr}(I \cdot I) + 2 \text{Tr}(IT) \text{Tr}(I)^2 = 4 \text{Tr}(IT)$. Thus $IT \in \mathcal{S}'$. Now consider $D = T - R_{IT}/2 \in \mathcal{R}$. We show $D \in \mathcal{D}$. If $a \in \mathcal{S}$, we have (aD, a, I) + (a, aD, I)

+(a, a, ID) = 0, or $2(a, aD, I) + (a, a, IT) - (a, a, I \cdot IT)/2 = 0 = 2(a, aD, I)$, or (a, aD, I) = 0. But $(a, aD, I) = -(a, aD) + 2 \operatorname{Tr}(aD)\operatorname{Tr}(a)$. Thus $(a, aD) = 2 \operatorname{Tr}(aD)\operatorname{Tr}(a)$. From ID = 0, we have further that $0 = (aD, I, I) + (a, ID, I) + (a, I, ID) = (aD, I, I) = 4 \operatorname{Tr}(aD)$, so that $\operatorname{Tr}(aD) = 0$, and (a, aD) = 0 by the above. Thus D is skew with respect to (x, y), so is a derivation of \Im . We thus have

$$(33) T = D + R_{(I/2)T} \in \mathfrak{D} \oplus \mathfrak{R}_{\mathfrak{F}},$$

and $\mathfrak{L} = \mathfrak{D} \oplus \mathfrak{R}_{\mathfrak{I}'}$, as asserted. It follows that \mathfrak{L} has dimension 78 (since $I \in \mathfrak{J}$, $R_a = R_b$ implies a = b). We now show that \mathfrak{L} is the simple Lie algebra of classical type E_b over \mathfrak{F} .

In notations already established in §1, the linear span of the derivations $(0, 0, 0, H_i)$, $1 \le i \le 4$, is a Cartan subalgebra of \mathfrak{D} . In \mathfrak{L} , let \mathfrak{L} be the subspace spanned by these four derivations and by the multiplications $h_5 = R_{w_1}$, $h_6 = R_{w_2}$. We show that \mathfrak{L} is an abelian Cartan subalgebra relative to which (i)-(v) of [8] are satisfied, and we shall display a fundamental system of roots relative to \mathfrak{L} which is of type E_6 . The simplicity of \mathfrak{L} will then follow immediately.

From §1, we see that each w_j , j=1, 2, is annihilated by each of the derivations $h_i=2(0,\ 0,\ 0,\ H_i)$, $1\leq i\leq 4$, hence that $[h_jh_i]=0$, j=5, 6, $1\leq i\leq 4$, by $[R_aD]=R_{aD}$. Now we know that $[h_bh_b]$ is a derivation $D=(b_{12},\ b_{13},\ b_{23},\ T)$, where $w_1D=b_{12}(1,\ 2)+b_{13}(1,\ 3)/2-b_{23}(2,\ 3)/2$, $c(1,\ 2)D={\rm diag}\left\{\gamma_{11},\ \gamma_{22},\ \gamma_{33}\right\}+(cT)(1,\ 2)/2+c_{13}(1,\ 3)+c_{23}(2,\ 3)$, for some γ_{ii} , c_{jk} . One readily calculates that $w_1[h_bh_b]=0=c(1,\ 2)[h_bh_b]$, so that $b_{12}=b_{13}=b_{23}=0$ and T=0; i.e., D=0, and § is a 6-dimensional commutative subalgebra. We also note:

$$c(1, 2)h_{5} = 0; c(1, 2)h_{6} = c(1, 2); w_{1}h_{5} = \operatorname{diag}\{2, 2, 0\};$$

$$(34) \qquad w_{2}h_{5} = \operatorname{diag}\{0, -2, 0\} = w_{1}h_{6}; w_{2}h_{6} = \operatorname{diag}\{0, 2, 2\};$$

$$c(1, 3)h_{5} = c(1, 3) = -c(1, 3)h_{6}; c(2, 3)h_{5} = -c(2, 3); c(2, 3)h_{6} = 0.$$

Moreover, if D is of the form (0, 0, 0, T), we have $[h_iD] = 0$, i = 5, 6. Then, as T runs through the 24 transformations of $\mathfrak{E}: E_{ij} - E_{j+4,i+4}, i \neq j$; $E_{i+4,j} - E_{j+4,i}, i < j$; $E_{i,j+4} - E_{j,i+4}, i < j$; $1 \leq i, j \leq 4$, as in §1, we have linear functions $\gamma_1, \dots, \gamma_{12}$ on \mathfrak{F} with $\gamma_i(h_5) = 0 = \gamma_i(h_6)$, $1 \leq i \leq 12$, and where $\gamma_i(h_j)$ has one of the forms $\delta_{mj} - \delta_{nj}$, $-\delta_{mj} - \delta_{nj}$ for fixed m, n, $1 \leq m < n \leq 4$, and all j, $1 \leq j \leq 4$, such that $[(0, 0, 0, T), h] = \pm \gamma(h)(0, 0, 0, T)$ for all T above, where γ runs through $\gamma_1, \dots, \gamma_{12}$, and where each (0, 0, 0, T) corresponds to a different function from $\pm \gamma_1, \dots, \pm \gamma_{12}$.

For $a \in \mathbb{C}$, we let $a(1) = R_{a(1,2)}$, $a(2) = R_{a(1,3)}$, $a(3) = R_{a(2,3)} \in \mathbb{C}$. Then we have

$$[u_i(1) \pm 2(u_i, 0, 0, 0), h_i] = u_i(1) \pm 2(u_i, 0, 0, 0),$$

$$[u_{i+4}(1) \pm 2(u_{i+4}, 0, 0, 0), h_i] = -(u_{i+4}(1) \pm 2(u_{i+4}, 0, 0, 0)),$$
$$[u_i(1) \pm 2(u_i, 0, 0, 0), h_j] = 0 = [u_{i+4}(1) \pm 2(u_{i+4}, 0, 0, 0), h_j],$$

 $1 \le i, j \le 4, i \ne j$. These follow readily from §1 and $[R_a D] = R_{aD}$.

We also have in general $[b(1) \pm 2(b, 0, 0, 0), h_{\delta}] = [R_{b(1,2)}h_{\delta}] \mp 2R_{w_1(b,0,0,0)}$. Now $w_1[b(1), h_{\delta}] = -\text{diag}\{2, 2, 0\}b(1) = -4b(1, 2) = -2w_1(2(b, 0, 0, 0)),$ while for $c \in C$, $(c(1, 2)[b(1), h_{\delta}])_{12} = 0$ is readily checked. Thus the derivation $[b(1), h_{\delta}]$ is -4(b, 0, 0, 0). Also, $w_1(b, 0, 0, 0) = b(1, 2)$, so $R_{w_1(b,0,0,0)} = b(1)$, yielding, together with analogous computations for h_{δ} ,

(36)
$$[b(1) \pm 2(b, 0, 0, 0), h_b] = \mp 2(b(1) \pm 2(b, 0, 0, 0)), \\ [b(1) \pm 2(b, 0, 0, 0), h_b] = \pm (b(1) \pm 2(b, 0, 0, 0)).$$

Thus as b runs through the basis u_1, \dots, u_8 of \mathfrak{C} , we have 16 distinct linear functions γ on H with $[b(1) \pm 2(b, 0, 0, 0), h] = \gamma(h)(b(1) \pm 2(b, 0, 0, 0))$ for all $h \in \mathfrak{F}$. These consist of eight functions $\gamma_{13}, \dots, \gamma_{20}$ and their negatives, with $\gamma_j(h_b) = -2, \gamma_j(h_b) = 1, 13 \le j \le 16$, and with $\gamma_j(h_b) = 2, \gamma_j(h_b) = -1, 17 \le j \le 20$. For $13 \le j \le 16$, we have $\gamma_j(h_i) = \delta_{j-12,i}$, $1 \le i \le 4$, and for $17 \le j \le 20, \gamma_j(h_i) = \delta_{j-16,i}$, $1 \le i \le 4$. For $1 \le i \le 4$, $u_i(1) + 2(u_i, 0, 0, 0)$ belongs to $\gamma_{i+12}, u_{i+4}(1) - 2(u_{i+4}, 0, 0, 0)$ to $-\gamma_{i+16}$.

Similarly, we have eight linear functions $\gamma_{21}, \dots, \gamma_{28}$ on \mathfrak{F} , with $\gamma_j(h_i) = -1/2 + \delta_{j-20,i}$, $21 \le j \le 24$, $1 \le i \le 4$, $\gamma_j(h_b) = -1 = \gamma_j(h_b)$, $21 \le j \le 24$, and with $\gamma_j(h_b) = 1 = \gamma_j(h_b)$, $25 \le j \le 28$, $\gamma_j(h_i) = -1/2 + \delta_{j-24,i}$, $25 \le j \le 28$, $1 \le i \le 4$. For $1 \le i \le 4$, $u_i(2) + 2(0, u_i, 0, 0)$ belongs to $\gamma_{i+20}, u_{i+4}(2) - 2(0, u_{i+4}, 0, 0)$ to $-\gamma_{i+20}, u_i(2) - 2(0, u_i, 0, 0)$ to $\gamma_{i+24}, u_{i+4}(2) + 2(0, u_{i+4}, 0, 0)$ to $-\gamma_{i+24}$. Finally, there are eight linear functions $\gamma_{29}, \dots, \gamma_{36}$ on \mathfrak{F} , with $\gamma_j(h_b) = 1$, $\gamma_j(h_b) = -2$, $29 \le j \le 32$, $\gamma_j(h_i) = -1/2 + \delta_{j-28,i} + \delta_{4,i}$, $29 \le j \le 31$, $1 \le i \le 4$, $\gamma_{32}(h_i) = -1/2$, $1 \le i \le 4$, and with $\gamma_j(h_b) = -1$, $\gamma_j(h_b) = 2$, $33 \le j \le 36$, $\gamma_j(h_i) = \gamma_{j-4}(h_i)$, $33 \le j \le 36$, $1 \le i \le 4$. For $1 \le i \le 4$, $u_i(3) + 2(0, 0, u_i, 0)$ belongs to $\gamma_{i+28}, u_{i+4}(3) - 2(0, 0, u_{i+4}, 0)$ to $-\gamma_{i+32}$. (These formulas are derived from (14), (34), and the formulas (2) for H_i^{ℓ} and H_i^{ℓ} , $1 \le i \le 4$.)

It follows as in §1 that \mathfrak{F} is an abelian Cartan subalgebra of \mathfrak{L} relative to which \mathfrak{L} is the direct sum of \mathfrak{F} and the 72 one-dimensional root-spaces \mathfrak{L}_{α} , where α runs through $\pm \gamma_1, \dots, \pm \gamma_{36}$. Since the roots α span \mathfrak{F}^* , one sees as before that the center of \mathfrak{L} is zero. To see that $[\mathfrak{L}\mathfrak{L}] = \mathfrak{L}$ it will be enough to show that $\mathfrak{F} \subseteq [\mathfrak{L}\mathfrak{L}]$. This will follow when we show that each $[\mathfrak{L}_{-\alpha}\mathfrak{L}_{\alpha}] \neq 0$, hence is one-dimensional, for here the proof will show that $[\mathfrak{L}\mathfrak{L}]$ contains all h_i , $1 \leq i \leq 6$.

Now $[u_i(1), u_{i+4}(1)]$, $1 \le i \le 4$, is a derivation sending w_1 into 0 by (34), and a(1, 2) into $4(a, u_i)u_{i+4}(1, 2) - 4(a, u_{i+4})u_i(1, 2)$. Thus $[u_i(1), u_{i+4}(1)] = (0, 0, 0, T)$, where $aT = 8(a, u_i)u_{i+4} - 8(a, u_{i+4})u_i$. But this means that $T = -8H_i$, since $u_iT = 0 = -8u_iH_i$, $j \ne i$, i+4, $u_iT = -8(u_i, u_{i+4})u_i = -8u_i = -8u_iH_i$, and $u_{i+4}T = 8(u_{i+4}, u_i)u_{i+4} = 8u_{i+4} = -8u_{i+4}H_i$, $1 \le i \le 4$. We also have $[u_i(1), (u_{i+4}, 0, 0, 0)] = R_{u_i(1,2)(u_{i+4}, 0, 0, 0)} = (\text{diag}\{-2, 2, 0\})/2 = -h_i$,

 $[u_{i+4}(1), (u_i, 0, 0, 0)] = -h_5$, and $[(u_i, 0, 0, 0), (u_{i+4}, 0, 0, 0)] = (0, 0, 0, U)$, where $aU = 2(a, u_{i+4})u_i - 2(a, u_i)u_{i+4} = 2aH_i$, or $U = 2H_i$. Thus

$$[u_i(1) \pm 2(u_i, 0, 0, 0), u_{i+4}(1) \mp 2(u_{i+4}, 0, 0, 0)] = \pm 4h_5 - 8h_i,$$

 $1 \le i \le 4$. By our results of §1 on \mathfrak{D} , namely that $h_i \in [\mathfrak{D}\mathfrak{D}]$, $1 \le i \le 4$, it follows that $h_i \in [\mathfrak{R}\mathfrak{D}]$, and with the results of that section and (37), that $[\mathfrak{L}_{-\alpha}\mathfrak{L}_{\alpha}]$ is one-dimensional if α is among $\pm \gamma_1, \cdots, \pm \gamma_{20}$. Similarly, we have $[u_i(2) \pm 2(0, u_i, 0, 0), u_{i+4}(2) \mp 2(0, u_{i+4}, 0, 0)] = D_i \mp 2R_{u_i(1,3)(0,u_{i+4},0,0)} \mp 2R_{u_{i+4}(3)(0,u_i,0,0)}$, where $D_i \in \mathfrak{D}$ and $1 \le i \le 4$; also

$$[u_i(3) \pm 2(0, 0, u_i, 0), u_{i+4}(3) \mp 2(0, 0, u_{i+4}, 0)]$$

$$= E_i \mp 2R_{u_i(2,3)(0,0,u_{i+4},0)} \mp 2R_{u_{i+4}(2,3)(0,0,u_{i},0)}, \quad 1 \le i \le 4, \text{ where } E_i \in \mathfrak{D}.$$

From (9), we find that

$$u_{i}(1,3)(0, u_{i+4}, 0, 0) = u_{i+4}(1,3)(0, u_{i}, 0, 0) = -(w_{1} + w_{2}), u_{i}(2,3)(0, 0, u_{i+4}, 0)$$
$$= u_{i+4}(2,3)(0, 0, u_{i}, 0) = -w_{2},$$

hence that

$$[u_i(2) \pm 2(0, u_i, 0, 0), u_{i+4}(2) \mp 2(0, u_{i+4}, 0, 0)] = D_i \pm 4(h_5 + h_6) \neq 0,$$

$$1 \leq i \leq 4.$$

$$[u_i(3) \pm 2(0,0,u_i,0), u_{i+4}(3) \mp 2(0,0,u_{i+4},0)] = E_i \pm 4h_6 \neq 0.$$

This completes the proof that every $[\mathfrak{L}_{-\alpha}\mathfrak{L}_{\alpha}]$ is one-dimensional; we also see that $h_{\mathfrak{b}} \in [\mathfrak{L}]$, hence that $\mathfrak{G} \subseteq [\mathfrak{L}]$ and $[\mathfrak{L}] = \mathfrak{L}$. If the characteristic p of \mathfrak{F} is not 5, and if α , β are roots relative to the Cartan subalgebra \mathfrak{G} with $\beta \neq 0$, then not all $\alpha + m\beta$ (m an integer) are roots, by the fact that there are only five possible distinct values for each $\gamma(h_i)$, where γ runs through all roots (readily seen from the list of roots above). If p = 5, the same conclusion can be reached by checking cases. Thus \mathfrak{L} and \mathfrak{L} satisfy the conditions (i)-(v) of [8] for a Lie algebra of classical type.

We now show that \mathfrak{L} is simple of type E_6 . Namely, let $\alpha_1 = -\gamma_{17}$, the root to which $u_5(1) + 2(u_5, 0, 0, 0)$ belongs; let α_2 be the root to which $(0, 0, 0, E_{21} - E_{56})$ belongs, α_3 the root to which $(0, 0, 0, E_{32} - E_{67})$ belongs, α_4 the root to which $(0, 0, 0, E_{74} - E_{83})$ belongs, $\alpha_5 = \gamma_{32}$, the root to which $u_4(3) + 2(0, 0, u_4, 0)$ belongs, α_6 the root to which $(0, 0, 0, E_{43} - E_{78})$ belongs. These form a basis for \mathfrak{F}^* , and no $\alpha_i - \alpha_j$ is a root for $i \neq j$. They are a system of roots with diagram E_6 :

Since the diagram is connected, & is simple [8, Theorem 8]; since the system is of type E_6 , it is fundamental in the sense of §10 of [8] (see Case 4 of the

proof of Theorem 7 there), and \mathfrak{L} is the (normal) simple Lie algebra of type E_6 over \mathfrak{F} in the classification of [8]. With Theorem 9 of that paper, we have the

THEOREM 4. If the base field \mathfrak{F} is of characteristic different from 2 and 3, the Lie algebra \mathfrak{L} of norm-skew transformations of the split exceptional Jordan algebra \mathfrak{F} over \mathfrak{F} is a normal simple Lie algebra of classical type E_6 . Thus any simple Lie algebra of classical type E_6 over \mathfrak{F} is isomorphic to \mathfrak{L} .

6. The enveloping algebra of the norm-skew algebra. To apply the device of Lemma 1 of [10] to conclude the feasibility of working with exponentials for all but a few low characteristics, we next prove the following analogue of the Lemma 1 of §2:

LEMMA 2. $\mathfrak{L}^4 = \mathfrak{E}(\mathfrak{J})$, the algebra of all linear transformations of \mathfrak{J} .

Proof. We take for \Im the basis I, w_1 , w_2 , $u_i(j, k)$, $1 \le i \le 8$, $1 \le j < k \le 3$, and proceed to show that & contains all the matrix-unit transformations relative to this basis. As in §2, $\Re^{j} \subseteq \Re^{j+1}$ for all $j \ge 1$, since $\Re = [\Re] \subseteq \Re^2$. With A = (0, 0, 0, T) a root-vector belonging to one of $\pm \gamma_1, \cdots, \pm \gamma_{12}$, and with B also of this form, we see that \mathfrak{L}^2 contains AB, and among the products AB are the matrix units $E(u_i(j, k), u_{i+4}(j, k))$ and $E(u_{i+4}(j, k), u_i(j, k))$, $1 \le i \le 4$, $1 \le j < k \le 3$. For (0, 0, 0, T)(0, 0, 0, U) sends $\operatorname{diag}\{\alpha_1, \alpha_2, \alpha_3\}$ $+ a_{12}(1, 2) + a_{13}(1, 3) + a_{23}(2, 3)$ into $(a_{12}TU)(1, 2) + (a_{13}T^{\psi}U^{\psi})(1, 3)$ $+(a_{23}T^{\phi}U^{\phi})(2, 3)$. The result now follows by an easy computation. Still letting A = (0, 0, 0, T) as before, and letting B run through the remaining 48 root-vectors, we find among the products AB scalar multiples of the following matrix units: $E(u_i(1, 2), u_j(1, 3)), j \in C(i), 1 \le i \le 8; E(u_i(1, 2), u_j(2,3)),$ $j \in C(i), i \neq 4, 8; E(u_i(1, 2), u_j(2, 3)), j \in D(i), i = 4, 8; E(u_i(1, 3), u_j(1, 2)),$ $j \in C(i)$, $1 \le i \le 8$; $E(u_i(1, 3), u_j(2, 3))$, $j \in C'(i)$, $i \ne 4$, 8; $E(u_i(1, 3), u_j(2, 3))$, $j \in D'(i)$, i = 4, 8; $E(u_i(2, 3), u_j(1, 2))$, $j \in C'(i)$, $1 \le i \le 8$; $E(u_i(2, 3), u_j(1, 3))$, $j \in C'(i), i \neq 4, 8; E(u_i(2, 3), u_j(1, 3)), j \in D'(i), i = 4, 8.$

Following these matrix-unit transformations by elements of the form A = (0, 0, 0, T), we see that \Re^3 contains all $E(u_i(j, k), u_{i'}(j', k'))$, except possibly for the matrix units $E(u_i(j, k), u_i(j, k))$. Now for $1 \le i \le 4$, we have $E(u_i(1, 2), u_{i+4}(1, 2)) \in \Re^2$, and $E(u_i(1, 2), u_{i+4}(1, 2))(u_i(1) + 2(u_i, 0, 0, 0))$ is a nonzero scalar multiple of $-E(u_i(1, 2), w_1) + E(u_i(1, 2), w_2) + E(u_i(1, 2), I)$; hence the latter is in \Re^3 , as is $E(u_i(1, 2), u_{i+4}(1, 2))(u_i(1) - 2(u_i, 0, 0, 0))$, a nonzero scalar multiple of $2E(u_i(1, 2), w_1) + E(u_i(1, 2), w_2) + E(u_i(1, 2), I)$. It follows that $E(u_i(1, 2), w_1) \in \Re^3$, $E(u_i(1, 2), w_2) + E(u_i(1, 2), I) \in \Re^3$, $1 \le i \le 4$. A symmetric argument shows that this result holds for $1 \le i \le 8$, and one likewise proves that with $j \in C(i)$, $1 \le j \le 4$,

$$E(u_i(1, 2), u_j(1, 3))(u_{j+4}(2) + 2(0, u_{j+4}, 0, 0)) \in \mathbb{R}^3$$

yields $E(u_i(1, 2), w_1) + 2E(u_i(1, 2), w_2) - E(u_i(1, 2), I) \in \mathbb{R}^3$. With the above,

we have $E(u_i(1, 2), w_2)$ and $E(u_i(1, 2), I) \in \mathbb{R}^3$, $1 \le i \le 8$. Similarly, all $E(u_i(j, k), w_1)$, $E(u_i(j, k), w_2)$, $E(u_i(j, k), I)$ are in \mathbb{R}^3 . Using products of the form $(u_i(1) \pm 2(u_i, 0, 0, 0))E(u_i(1, 2), u_{i'}(j, k))$, where the second factor is one of our matrix units in \mathbb{R}^2 , and similar products

$$(u_i(2) \pm 2(0, u_i, 0, 0)) E(u_i(1, 3), u_{i'}(j, k)),$$

$$(u_i(3) \pm 2(0, 0, u_i, 0)) E(u_i(2, 3), u_{i'}(j, k)),$$

we find that \mathfrak{L}^3 contains all the matrix units $E(w_1, u_i(j, k))$, $E(w_2, u_i(j, k))$, $E(I, u_i(j, k))$. From the fact that $E(u_i(j, k), u_{i+4}(j, k))$ and $E(u_{i+4}(j, k), u_i(j, k))$ are in \mathfrak{L}^2 for $1 \le i \le 4$, we see that \mathfrak{L}^4 contains $E(u_i(j, k), u_i(j, k))$, $1 \le i \le 8$, $1 \le j < k \le 3$.

Now it has been shown that for $w = w_1$, w_2 , I, we have $E(w, u_i(j, k)) \in \mathbb{R}^3$. Thus $E(w, u_1(1, 2))(u_5(1) \pm 2(u_5, 0, 0, 0))$ and $E(w, u_1(1, 3))(u_5(2) + 2(0, u_5, 0, 0))$ are in \mathbb{R}^4 ; it follows that \mathbb{R}^4 contains $-E(w, w_1) + E(w, w_2) + E(w, I)$, $-2E(w, w_1) - E(w, w_2) - E(w, I)$, $-E(w, w_1) - 2E(w, w_2) + E(w, I)$, and therefore that all three of $E(w, w_1)$, $E(w, w_2)$, E(w, I) are in \mathbb{R}^4 . Thus all matrix units are in \mathbb{R}^4 , and $\mathbb{R}^4 = \mathfrak{E}(\mathfrak{F})$, as asserted.

It follows that the only linear transformations of \mathfrak{F} which commute with all elements of \mathfrak{F} are the scalars. For each of the 72 root-vectors $E_{\alpha} \in \mathfrak{F}$ as above we have $E_{\alpha}^2 = 0$, hence $\exp(\lambda E_{\alpha}) = I + \lambda E_{\alpha}$. More generally, if E_{α} is a root-vector relative to any standard Cartan subalgebra of \mathfrak{F} , we have $(\operatorname{ad}(E_{\alpha}))^3 = 0$, and E_{α} is nilpotent. From this and the fact that $\mathfrak{F}^4 = \mathfrak{F}(\mathfrak{F})$ it follows by Lemma 1 of [10] that $E_{\alpha}^9 = 0$. Since we wish to use the result (7) of [10] for trilinear forms, we are led to assume that the characteristic of \mathfrak{F} is different from 2, 3, 5, 7, 11, 13, 17, 19, 23. In the sequel we assume this restriction on the characteristic.

7. Automorphisms of the norm-skew algebra. From §1 of [10], it now follows that the group of invariant automorphisms $\mathfrak{s}(\mathfrak{L})$ of \mathfrak{L} is a (normal) subgroup of the group of all mappings $X \to A^{-1}XA$, where A is a nonsingular linear transformation of \mathfrak{L} such that (xA, yA, zA) = (x, y, z) for all $x, y, z \in \mathfrak{L}$. In fact, if A is any linear transformation of \mathfrak{L} such that (xA, yA, zA) = (x, y, z) for all $x, y, z \in \mathfrak{L}$, then A is nonsingular; for if xA = 0, then $0 = (xA, IA, IA) = (x, I, I) = 4 \operatorname{Tr}(x)$, or $x \in \mathfrak{L}'$. If $y \in \mathfrak{L}'$, then $0 = (xA, yA, IA) = (x, y, I) = -\operatorname{Tr}(x \cdot y) = -(x, y)$. Thus $x \in \mathfrak{L}'$ and (x, y) = 0 for all $y \in \mathfrak{L}'$. But we have seen that (a, b) is nondegenerate on \mathfrak{L} , and therefore also on the orthogonal complement \mathfrak{L}' of the nonisotropic subspace $\mathfrak{L}I$. Hence x = 0, and A is nonsingular.

Moreover, by §6, if $X = A^{-1}XA$ for all $X \in \mathbb{R}$, then $A = \lambda I$, $\lambda \in \mathfrak{F}$, and if for this A, (xA, yA, zA) = (x, y, z) for all x, y, $z \in \mathfrak{F}$, then $\lambda^3 = 1 \in \mathfrak{F}$. Since the group \mathfrak{G} of all linear transformations A of \mathfrak{F} such that (xA, yA, zA) = (x, y, z) for all x, y, z contains the $\exp(E_{\alpha}) = I + E_{\alpha}$, where E_{α} runs through the root-vectors relative to \mathfrak{F} in \mathfrak{L} , and since every transformation of \mathfrak{F}

which commutes with all these commutes with all E_{α} , hence with all of $\mathfrak{E}(\mathfrak{F})$ by §6 and the fact that these E_{α} generate \mathfrak{F} , we see that the center \mathfrak{F} of \mathfrak{G} consists of the mappings λI , $\lambda \in \mathfrak{F}$, $\lambda^3 = 1$. Thus the group of invariant automorphisms of \mathfrak{F} may be regarded as a (normal) subgroup of the group $\mathfrak{G}/\mathfrak{F}$.

If T is a linear transformation of \Im , we denote by T^* its adjoint with respect to the trace form $(x, y) = \text{Tr}(x \cdot y) : (xT, y) = (x, yT^*)$ for all $x, y \in \Im$. Then $D^* = -D$ for all $D \in \mathfrak{D}$ by (29) and $R_a^* = R_a$ for all $a \in \mathfrak{J}$ by the associativity of the form. Since $\mathfrak{L} = \mathfrak{D} \oplus \mathfrak{R}_{\mathfrak{Z}'}$, the mapping $T \to -T^*$ maps \mathfrak{L} onto itself, is the identity on D, and is the negative of the identity on R₃. Moreover it is evidently an automorphism of \mathbb{L}. Next we show that this automorphism is not of the form $X \rightarrow A^{-1}XA$, where A is nonsingular in $\mathfrak{E}(\mathfrak{J})$. For then we should have DA = AD for all $D \in \mathfrak{D}$, $R_a A = -AR_a$ for all $a \in \mathfrak{J}'$. Therefore if $a \in \mathfrak{J}'$, $2aA = (I \cdot a)A = (IR_a)A = -(IA)R_a = -(IA) \cdot a = -aR_{IA}$. Thus $aA = -aR_{IA}/2$ whenever $a \in \mathfrak{J}'$. It is also clear that $IA = IR_{IA}/2$. If we set b = IA/2, we have $(\lambda I + a)A = \lambda IR_b - aR_b$, where $\lambda \in \mathfrak{F}$, $a \in \mathfrak{I}'$. If $D \in \mathfrak{D}$, then [AD] = 0, so that $0 = (\lambda I + a)[AD] = \lambda I[AD] + a[AD]$. With a = 0, we see from ID = 0 that $\lambda IAD = 0 = 2\lambda bD$ for all $\lambda \in \mathfrak{F}$, hence that bD = 0 for all $D \in \mathfrak{D}$. If $b = \beta I + b'$, $\beta \in \mathfrak{F}$, $b' \in \mathfrak{F}'$, then b'D = 0 for all $D \in \mathfrak{D}$. But we have seen in §2 that $\mathfrak{D}^4 = \mathfrak{E}(\mathfrak{J}')$, so that b' = 0, $b = \beta I$, $(\lambda I + a)A = 2\beta \lambda I - 2\beta a$. Next, taking $\lambda = 0$, $a = w_1 \in \mathfrak{J}'$, we have $(w_1 \cdot w_1)A = w_1R_{w_1}A = -w_1AR_{w_1}$ $=2\beta w_1 R_{w_1} = 2\beta (w_1 \cdot w_1)$. However, $w_1 \cdot w_1 = 2(2I + w_1 + 2w_2)/3$, so that $(w_1 \cdot w_1)A$ $=4\beta(2I-w_1-2w_2)/3\neq 2\beta(w_1\cdot w_1)$ unless $\beta=0$. This implies A=0, contrary to the assumption that A is nonsingular. Hence the automorphism $X \rightarrow -X^*$ is not of the form $X \rightarrow A^{-1}XA$.

In case \mathfrak{F} is algebraically closed, we have seen in [9] that the index of the group $\mathfrak{g}(\mathfrak{R})$ in the full automorphism group $\mathfrak{A}(\mathfrak{R})$ is either 1 or 2. Since the automorphism $X \to -X^*$ is not in $\mathfrak{g}(\mathfrak{R})$ by the above, this index is 2. Since $X \to -X^*$ is not in the group of automorphisms $X \to A^{-1}XA$, $A \in \mathfrak{G}$, and since this group contains $\mathfrak{g}(\mathfrak{R})$, we see that it must coincide with $\mathfrak{g}(\mathfrak{R})$. Thus every automorphism of \mathfrak{R} is either of the form $X \to A^{-1}XA$, where $A \in \mathfrak{G}$, or of the form $X \to -A^{-1}X^*A$, where $A \in \mathfrak{G}$. The group $\mathfrak{g}(\mathfrak{R})$ is isomorphic to $\mathfrak{G}/\mathfrak{F}$, and consists of all automorphisms of \mathfrak{R} of the former of these types.

If \mathfrak{F} is not algebraically closed, let \mathfrak{R} be its algebraic closure, and consider $\mathfrak{L}_{\mathfrak{R}}$, which as in previous cases is the Lie algebra of type $E_{\mathfrak{G}}$ formed from the split exceptional Jordan algebra $\mathfrak{J}_{\mathfrak{R}}$ by the above process. Every automorphism σ of \mathfrak{L} extends to a unique automorphism of $\mathfrak{L}_{\mathfrak{L}}$, which is either of the form $X \to A^{-1}XA$ or of the form $X \to A^{-1}X^*A$, where A preserves the norm form in $\mathfrak{J}_{\mathfrak{L}}$ and where X^* is the adjoint of X with respect to the trace form in $\mathfrak{J}_{\mathfrak{L}}$. Since the trace and norm forms in $\mathfrak{J}_{\mathfrak{L}}$ extend those in \mathfrak{J} , we see that every automorphism σ of \mathfrak{L} is either of the form $X \to A^{-1}XA$ or of the form $X \to A^{-1}X^*A$, where A is a linear transformation of $\mathfrak{J}_{\mathfrak{L}}$ such that (xA, yA, zA) = (x, y, z) for all $x, y, z \in \mathfrak{J}$. As in §3, it follows that either $X^{\sigma} = B^{-1}XB$ for all

 $X \in L$ or $X^{\sigma} = -B^{-1}X^*B$, where B is a nonsingular linear transformation of \mathfrak{F} . As before, we have $B_{\mathfrak{R}}A^{-1} = \lambda I$, $\lambda \in \mathfrak{R}$, $B_{\mathfrak{R}} = \lambda A$, so that for $x, y, z \in \mathfrak{F}$, $(xB, yB, zB) = (xB_{\mathfrak{R}}, yB_{\mathfrak{R}}, zB_{\mathfrak{R}}) = \lambda^3(xA, yA, zA) = \lambda^3(x, y, z)$. Since B is nonsingular, some $(xB, yB, zB) \neq 0$, and $\lambda^3 \in \mathfrak{F}$. Thus there is a nonzero $\beta \in \mathfrak{F}$ such that $(xB, yB, zB) = \beta(x, y, z)$ for all $x, y, z \in \mathfrak{F}$. If we let \mathfrak{B} be the group of all linear transformations of \mathfrak{F} with this property, we see that every automorphism of \mathfrak{F} is either of the form $X \rightarrow B^{-1}XB$, $B \in \mathfrak{F}$, or of the form $X \rightarrow B^{-1}X^*B$, $B \in \mathfrak{F}$ (but not both, by the second previous paragraph). The center of \mathfrak{B} commutes with all elements of \mathfrak{G} , hence consists of all nonzero scalars λI , $\lambda \in \mathfrak{F}$, and the automorphism group $\mathfrak{A}(\mathfrak{F})$ is the semi-direct product of $\mathfrak{B}/\mathfrak{F}^*I$ by the cyclic group of order 2 generated by $X \rightarrow -X^*$. To summarize:

THEOREM 5. If the characteristic of \mathfrak{F} is zero or a prime greater than 23, and if \mathfrak{R} is the Lie algebra of all norm-skew transformations of the split exceptional Jordan algebra \mathfrak{F} over \mathfrak{F} , then every automorphism of \mathfrak{R} is of one and only one of the forms $X \to B^{-1}XB$, $X \to -B^{-1}X^*B$, where X^* is the adjoint of X with respect to the bilinear form $(x, y) = \operatorname{Tr}(x \cdot y)$ in \mathfrak{F} , and where $B \in \mathfrak{B}$, the group of all linear transformations of \mathfrak{F} such that for some $\beta \neq 0$ in \mathfrak{F} , $(xB, yB, zB) = \beta(x, y, z)$ for all $x, y, z \in \mathfrak{F}$. If \mathfrak{F} is algebraically closed, B may be taken from the subgroup \mathfrak{G} of \mathfrak{B} consisting of those $B \in \mathfrak{B}$ for which $\beta = 1$, and the transformations $X \to B^{-1}XB$, $B \in \mathfrak{G}$, constitute the group of invariant automorphisms of \mathfrak{L} . The automorphism group of \mathfrak{L} is thus the semi-direct product of the group $\mathfrak{D}/\mathfrak{F}^*I$ and a cyclic group of order 2; if \mathfrak{F} is algebraically closed, we can replace $\mathfrak{D}/\mathfrak{F}^*I$ by the isomorphic group $\mathfrak{G}/\mathfrak{F}$, where $\mathfrak{F}=\{\lambda I \mid \lambda^3=1\}$.

8. Generation of the group & of norm-preserving transformations. Finally we show that $\mathfrak{g}(\mathfrak{L}) \cong \mathfrak{G}/\mathfrak{Z}$ in all cases by showing that $\mathfrak{G}/\mathfrak{Z}$ is the subgroup G' of $\mathfrak{g}(\mathfrak{L})$ studied by Chevalley [2], that is, the subgroup generated by all $\exp(\operatorname{ad}(E_{\alpha}))$, where E_{α} runs through all root-vectors belonging to nonzero roots in one standard Cartan decomposition of &. The simplicity of \$\mathbb{G}/\mathbb{Z}\$ (and of $\mathfrak{g}(\mathfrak{L})$) will then follow by Chevalley's results. (In unpublished work, Jacobson has proved the simplicity of $\mathfrak{G}/\mathfrak{Z}$ by more direct methods.) The construction of Chevalley starts with a simple complex Lie algebra of type E_6 and obtains a standard Cartan decomposition of type E_6 of a Lie algebra of classical type over the field §. Then this algebra is isomorphic to our algebra \mathfrak{L} , and under the isomorphism the generators of the group G' acting in Chevalley's algebra correspond to mappings $\exp(\operatorname{ad}(E_{\alpha}))$ in \mathfrak{L} , where E_{α} runs through the root-vectors relative to a standard Cartan subalgebra S₀ of \mathfrak{L} , a fundamental system of roots of \mathfrak{L} relative to \mathfrak{H}_0 being of type E_6 . It follows by Theorem 9 of [8] that there is an automorphism σ of \mathfrak{L} mapping the Cartan subalgebra & used in our decomposition of \$5 onto the new subalgebra \$0. Since \$\partial\$ is mapped into \$\partial\$ by

$$X \to -X^*$$
 $(-h_i^* = h_i, 1 \le i \le 4; -h_j^* = -h_j, j = 5, 6),$

we may assume that σ is of the form $X \to A^{-1}XA$, $A \in \mathfrak{B}$. The system of root-vectors $\{E'_{\alpha}\}$ relative to \mathfrak{F}_0 thus consists of all scalar multiples of the elements $A^{-1}E_{\alpha}A$, where E_{α} runs through the 72 root-vectors relative to \mathfrak{F} as listed in §5. Now $\exp(\operatorname{ad}(A^{-1}E_{\alpha}A))$ sends $X \in \mathfrak{L}$ into

$$A^{-1}(\exp(E_{\alpha}))^{-1}AXA^{-1}(\exp(E_{\alpha}))A$$

i.e., conjugates X by an element of $A^{-1}GA$, where G is the subgroup of \mathfrak{G} generated by all $\exp(\lambda E_{\alpha})$, $\lambda \in \mathfrak{F}$, E_{α} a root-vector relative to \mathfrak{G} . We show $G = \mathfrak{G}$; then, since \mathfrak{G} is an invariant subgroup of \mathfrak{B} , it will follow that $A^{-1}GA = \mathfrak{G}$, thus that $G' \cong \mathfrak{G}/\mathfrak{Z} \cong \mathfrak{g}(\mathfrak{L})$.

We have seen that G contains the $\exp(\lambda(0, 0, 0, T))$, where $(0, 0, 0, T) \in \mathfrak{D}$ belongs to each of the roots $\pm \gamma_1, \cdots, \pm \gamma_{12}$ relative to \mathfrak{F} . Now we compute the effect on the general element

$$a = \operatorname{diag}\{\alpha_1, \alpha_2, \alpha_3\} + a_{12}(1, 2) + a_{13}(1, 3) + a_{23}(2, 3)$$

of 3 of the exponentials of the remaining root-vectors:

$$a \exp(\lambda(u_i(1) + 2(u_i, 0, 0, 0))) = a + \lambda[4(u_i, a_{12}) \operatorname{diag}\{0, 1, 0\} + 2\alpha_1 u_i(1, 2) + 2(\bar{u}_i a_{13})(2, 3)];$$

$$a \exp(\lambda(u_i(1) - 2(u_i, 0, 0, 0))) = a + \lambda[4(u_i, a_{12}) \operatorname{diag}\{1, 0, 0\} + 2\alpha_2 u_i(1, 2) + 2(u_i a_{23})(1, 3)];$$

$$a \exp(\lambda(u_i(2) + 2(0, u_i, 0, 0))) = a + \lambda[4(u_i, a_{13}) \operatorname{diag}\{0, 0, 1\} + 2\alpha_1 u_i(1, 3) + 2(\bar{a}_{12} u_i)(2, 3)];$$

$$a \exp(\lambda(u_i(2) - 2(0, u_i, 0, 0))) = a + \lambda[4(u_i, a_{13}) \operatorname{diag}\{1, 0, 0\} + 2(u_i \bar{a}_{23})(1, 2) + 2\alpha_3 u_i(1, 3)];$$

$$a \exp(\lambda(u_i(3) + 2(0, 0, u_i, 0))) = a + \lambda[4(u_i, a_{23}) \operatorname{diag}\{0, 0, 1\} + 2(a_{12} u_i)(1, 3) + 2\alpha_2 u_i(2, 3)];$$

$$a \exp(\lambda(u_i(3) - 2(0, 0, u_i, 0))) = a + \lambda[4(u_i, a_{23}) \operatorname{diag}\{0, 1, 0\} + 2(a_{13} \bar{u}_i)(1, 2) + 2\alpha_3 u_i(2, 3)].$$

Note. If we denote by $T_{ij}(u)$, $u \in \mathbb{C}$, $i \neq j$, that 3 by 3 \mathbb{C} -matrix with 1 in all diagonal positions and with u in the (i, j)-position and zero elsewhere, then for $a \in \mathcal{F}$, the element $(T_{ij}(u)a)T_{ji}(\bar{u}) = T_{ij}(u)(aT_{ji}(\bar{u}))$, defined by ordinary matrix multiplication, is again in \mathcal{F} . The mappings $a \to (T_{ij}(u)a)T_{ji}(\bar{u})$ of \mathcal{F} , as u runs through all scalar multiples of basis elements u_1, \dots, u_8 for \mathbb{C} , are just the mappings listed above. In their more general form, they have been utilized by Jacobson in unpublished work on the norm-preserving groups.

By a simple calculation,

$$\exp(\lambda(u_i(1) + 2(u_i, 0, 0, 0))) \exp(-\lambda(u_i(1) - 2(u_i, 0, 0, 0)))$$

$$= \exp(4\lambda(u_i, 0, 0, 0));$$

$$\exp(\lambda(u_i(2) + 2(0, u_i, 0, 0))) \exp(-\lambda(u_i(2) - 2(0, u_i, 0, 0)))$$

$$= \exp(4\lambda(0, u_i, 0, 0));$$

$$\exp(\lambda(u_i(3) + 2(0, 0, u_i, 0))) \exp(-\lambda(u_i(3) - 2(0, 0, u_i, 0)))$$

$$= \exp(4\lambda(0, 0, u_i, 0)).$$

Since the transformations $\exp(\mu(u_i, 0, 0, 0))$, $\exp(\mu(0, u_i, 0, 0))$, $\exp(\mu(0, 0, \mu_i, 0))$, together with the $\exp(\lambda(0, 0, 0, T))$, where (0, 0, 0, T) is a root-vector, generate the full group $\mathfrak{A}(\mathfrak{Z})$ by §4, we have $\mathfrak{A}(\mathfrak{Z})\subseteq G$.

As has been observed by Jacobson in a more general setting [6], an element T of the norm-preserving group $\mathfrak B$ is in $\mathfrak A(\mathfrak Z)$ if and only if TT=I. Since $\mathfrak A(\mathfrak Z)\subseteq G\subseteq \mathfrak B$ by the above, this may be verified for our special case by assuming $T\in \mathfrak B$, T=I, and by showing that it follows that $T\in \mathfrak A(\mathfrak Z)$. From (I,I,a)=(IT,IT,aT)=(I,I,aT) we find that $\mathrm{Tr}(aT)=\mathrm{Tr}(a)$ for all $a\in \mathfrak Z$. Together with (I,a,b)=(IT,aT,bT)=(I,aT,bT), this yields (aT,bT)=(a,b) for all $a,b\in \mathfrak Z$, hence that $\tau(aT,bT,cT)=\tau(a,b,c)$ for all $a,b,c\in \mathfrak Z$, by the fact that $\tau(a,b,c)=(a,b,c)+\mathrm{Tr}(a)(b,c)+\mathrm{Tr}(b)(a,c)+\mathrm{Tr}(c)(a,b)-2\mathrm{Tr}(a)\mathrm{Tr}(b)\mathrm{Tr}(c)$. Thus $((aT\cdot bT),cT)=\tau(aT,bT,cT)=\tau(a,b,c)=(a\cdot b,c)=((a\cdot b)T,cT)$ for all $a,b,c\in \mathfrak Z$. Since cT runs through $\mathfrak Z$, we have $(a\cdot b)T=aT\cdot bT$ for all a,b,b by the nondegeneracy of (x,y). Thus T is an automorphism.

It therefore follows that to show $G = \mathfrak{G}$, it suffices to show that if $T \in \mathfrak{G}$, then a sequence of multiplications by elements of G can transform T into an element U of \mathfrak{G} with IU = I. Then $U \in \mathfrak{A}(\mathfrak{F}) \subseteq G$, and so $T \in G$. Now $(I, I, I) = 12 \in \mathfrak{F}$, so that (IT, IT, IT) = 12. If b = IT, we wish to show there is a $V \in G$ such that bV = I; we prove that this is the case for all $b \in \mathfrak{F}$ with (b, b, b) = 12. Thus let $b = \text{diag}\{\beta_1, \beta_2, \beta_3\} + b_{12}(1, 2) + b_{13}(1, 3) + b_{23}(2, 3) \in J$, (b, b, b) = 12.

First we note that $\beta_1 = 0$, $b_{12} = b_{13} = 0$, is impossible, since these conditions imply (b, b, b) = 0. Now if $b_{12} = b_{13} = 0$, then $\beta_1 \neq 0$, and we may operate on b with $\exp(u_1(1) + 2(u_1, 0, 0, 0))$ to obtain an element c of norm 12 with $c_{12} \neq 0$. Thus we may assume that either $b_{12} \neq 0$ or $b_{13} \neq 0$. If $b_{12} \neq 0$ then for some i, $(b_{12}, u_i) \neq 0$, and we may operate on b with $\exp(\lambda(u_i(1) - 2(u_i, 0, 0, 0)))$, where λ is so chosen that $\beta_1 + 4\lambda(b_{12}, u_i) = 1$, to make β_1 into 1. If $b_{13} \neq 0$, a similar procedure may be applied with an $\exp(\lambda(u_i(2) - 2(0, u_i, 0, 0)))$. Thus we may assume $\beta_1 = 1$. Now if $b_{12} = \sum \alpha_i u_i$, $b_{13} = \sum \gamma_i u_i$, we operate on b successively with the generators $\exp(-\alpha_i(u_i(1) + 2(u_i, 0, 0, 0))/2)$, $1 \leq i \leq 8$, so that b_{12} is replaced by 0, and the condition $\beta_1 = 1$ is unaffected. Now the properties $b_{12} = 0$, $\beta_1 = 1$ are unchanged when we operate successively with the generators $\exp(-\gamma_i(u_i(2) + 2(0, u_i, 0, 0))/2)$, $1 \leq i \leq 8$, and the result now has

 $\beta_1 = 1$, $b_{12} = 0 = b_{13}$. Thus we may assume b has this form: $b = \text{diag}\{1, \beta_2, \beta_3\} + b_{23}(2, 3)$.

Now if $\beta_2 = 0$ and $b_{23} = 0$, then (b, b, b) = 0, which is impossible. If $b_{23} \neq 0$, we choose u_i so that $(u_i, b_{23}) \neq 0$, then choose λ so that $\beta_2 + 4\lambda(u_i, b_{23}) = 1$. Then operating on b with $\exp(\lambda(u_i(3) - 2(0, 0, u_i, 0)))$ leaves $\beta_1 = 1, b_{12} = 0 = b_{13}$, and replaces β_2 by 1. If $b_{23} = 0$ then $\beta_2 \neq 0$, and operating on b with $\exp(u_1(3) + 2(0, 0, u_1, 0))$ leaves $\beta_1 = 1, b_{12} = 0 = b_{13}$, and replaces b_{23} by $2\beta_2 u_1 \neq 0$. Then we can replace β_2 by 1 as above, so may assume $b = \operatorname{diag}\{1, 1, \beta_3\} + b_{23}(2, 3)$. If $b_{23} = \sum \delta_i u_i$, successive application of the

$$\exp(-\delta_i(u_i(3) + 2(0, 0, u_i, 0))/2), \qquad 1 \le i \le 8,$$

leaves unchanged $\beta_1 = 1$, $\beta_2 = 1$, $b_{12} = 0$, $b_{13} = 0$, and replaces b_{23} by 0. We have therefore transformed b by generators of G into diag $\{1, 1, \beta_3\}$, and may assume $b = \text{diag}\{1, 1, \beta_3\}$, (b, b, b) = 12. But $(b, b, b) = 4(2 + \beta_3^3) - 6(2 + \beta_3)(2 + \beta_3^2) + 2(2 + \beta_3)^3 = 12\beta_3$. Hence $\beta_3 = 1$, and b has been transformed into the identity as required. We have thus completed the proof of the following result.

THEOREM 6. If the base field \mathfrak{F} is not of characteristic 2 or 3, the transformations $I+\lambda E_{\alpha}$, where E_{α} runs through a set of root-vectors relative to the Cartan subalgebra \mathfrak{F} of §5 of the Lie algebra \mathfrak{F} of norm-skew transformations of the split exceptional Jordan algebra \mathfrak{F} generate the group \mathfrak{F} of norm-preserving transformations of \mathfrak{F} . If the characteristic of \mathfrak{F} is not a prime between 2 and 23, this result establishes that the group G' of Chevalley formed over \mathfrak{F} from a simple complex Lie algebra of type $E_{\mathfrak{F}}$ may be identified with the group $\mathfrak{F}(\mathfrak{F})$ of invariant automorphisms of \mathfrak{F} , and is also isomorphic to $\mathfrak{G}/\mathfrak{F}$, where \mathfrak{F} is the center of \mathfrak{F} ; the isomorphism is induced by the homomorphism $A \to I_A \colon X \to A^{-1}XA$ of \mathfrak{F} onto $\mathfrak{F}(\mathfrak{F})$.

Finally, we note that the mapping $B \rightarrow \beta(B)$ of \mathfrak{B} into the group \mathfrak{F}^* defined by $\beta(B)(x, y, z) = (xB, yB, zB)$ for all $x, y, z \in \mathfrak{F}$ is a homomorphism with kernel \mathfrak{B} . In fact, \mathfrak{B} is mapped onto \mathfrak{F}^* ; for if $x = \text{diag}\{\xi_1, \xi_2, \xi_3\} + x_{12}(1, 2) + x_{13}(1, 3) + x_{23}(2, 3) \in \mathfrak{F}$, then $(x, x, x) = 12((x_{12}x_{23}, x_{13}) - \xi_1(x_{23}, x_{23}) - \xi_2(x_{13}, x_{13}) - \xi_3(x_{12}, x_{12}) + \xi_1\xi_2\xi_3)$, so that if $0 \neq \beta \in \mathfrak{F}$ and $x_{12} = \sum \alpha_i u_i$, $x_{13} = \sum \beta_i u_i$, $x_{23} = \sum \gamma_i u_i$, the transformation B of \mathfrak{F} defined as follows has $(xB, xB, xB) = \beta(x, x, x)$ for all $x \in \mathfrak{F}$:

$$xB = \operatorname{diag}\{\beta\xi_1, \, \xi_2, \, \xi_3\} + y_{12}(1, \, 2) + y_{13}(1, \, 3) + y_{23}(2, \, 3),$$

where

$$y_{12} = \beta \sum_{i \in C(4)} \alpha_i u_i + \sum_{i \in D(4)} \alpha_i u_i,$$

$$y_{13} = \sum_{i \in C'(4)} \beta_i u_i + \beta \sum_{i \in D'(4)} \beta_i u_i,$$

$$y_{23} = \sum_{i \neq 4.8} \gamma_i u_i + \beta^{-1} \gamma_4 u_4 + \beta \gamma_8 u_8.$$

By polarization $(xB, yB, zB) = \beta(x, y, z)$ for all $x, y, z \in \mathcal{F}$, so that $B \in \mathfrak{B}$ and $\beta(B) = \beta$. Thus we conclude $\mathfrak{B}/\mathfrak{G} \cong \mathfrak{F}^*$. If we denote by \mathfrak{F}^{*3} the group of third powers of elements of \mathfrak{F}^* , then following $B \to \beta(B)$ by the canonical homomorphism of \mathfrak{F}^* onto $\mathfrak{F}^*/\mathfrak{F}^{*3}$ gives a homomorphism of \mathfrak{B} onto $\mathfrak{F}^*/\mathfrak{F}^{*3}$. The kernel evidently contains the kernel \mathfrak{F}^*I of the homomorphism $B \to I_B$ of \mathfrak{B} onto the group $I_{\mathfrak{B}}$ of automorphisms of \mathfrak{F} of the form $X \to B^{-1}XB$, $B \in \mathfrak{B}$. Hence a homomorphism $I_B \to \beta(B)\mathfrak{F}^{*3}$ of $I_{\mathfrak{B}}$ onto $\mathfrak{F}^*/\mathfrak{F}^{*3}$ is induced. If $\beta(B) = \lambda^3 \in \mathfrak{F}^{*3}$, then $I_B = I_{(\lambda^{-1}B)}$, and $\lambda^{-1}B \in \mathfrak{G}$; thus the kernel of $I_B \to \beta(B)\mathfrak{F}^{*3}$ is contained in the group $I_{\mathfrak{B}} = \mathfrak{g}(\mathfrak{F})$ of invariant automorphisms. The reverse inclusion is trivial, so we see that $I_B/I_{\mathfrak{B}} = I_{\mathfrak{B}}/\mathfrak{g}(\mathfrak{F})$ is isomorphic to $\mathfrak{F}^*/\mathfrak{F}^{*3}$. Thus the full automorphism group has the normal series $\mathfrak{A}(\mathfrak{F}) \supset I_{\mathfrak{B}} \supset \mathfrak{g}(\mathfrak{F})$ $\supset (I)$, with $\mathfrak{A}(\mathfrak{F})/I_{\mathfrak{B}} \cong Z_2$, $I_{\mathfrak{B}}/\mathfrak{g}(\mathfrak{F}) \cong \mathfrak{F}^*/\mathfrak{F}^{*3}$, and $\mathfrak{g}(\mathfrak{F}) \cong \mathfrak{G}/\mathfrak{F}$, a simple group.

BIBLIOGRAPHY

- 1. C. Chevalley, The algebraic theory of spinors, New York, Columbia University Press, 1954.
 - 2. ——, Sur certains groupes simples, Tôhoku Math. J. vol. 7 (1955) pp. 14-66.
- 3. C. Chevalley and R. D. Schafer, The exceptional simple Lie algebras F_4 and E_6 , Proc. Nat. Acad. Sci. U.S.A. vol. 36 (1950) pp. 137-141.
- 4. H. Freudenthal, Oktaven, Ausnahmegruppen, Oktavengeometrie, Utrecht, Rijksuniversiteit Utrecht, 1951.
- 5. N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo II, vol. 7 (1958) pp. 1-26.
- 6. ——, Some groups of transformations defined by Jordan algebras. I, J. Reine Angew. Math. vol. 201 (1959) pp. 178-195.
- 7. ——, Some groups of transformations defined by Jordan algebras. II, J. Reine Angew. Math. vol. 204 (1960) pp. 74-98.
- 8. W. H. Mills and G. B. Seligman, *Lie algebras of classical type*, J. Math. Mech. vol. 6 (1957) pp. 519-548.
- 9. G. B. Seligman, On automorphisms of Lie algebras of classical type, Trans. Amer. Math. Soc. vol. 92 (1959) pp. 430-448.
- 10. ———, On automorphisms of Lie algebras of classical type. II, Trans. Amer. Math. Soc. vol. 94 (1960) pp. 452-481.
- 11. B. L. van der Waerden, Gruppen von linearen Transformationen, Berlin, Springer, 1935, p. 70.

YALE UNIVERSITY, NEW HAVEN, CONNECTICUT